Florence Siepmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639689/publications.pdf

Version: 2024-02-01

66315 58549 7,372 130 42 82 citations h-index g-index papers 131 131 131 7029 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 2008, 364, 328-343.	2.6	1,036
2	Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 2012, 161, 351-362.	4.8	641
3	Mathematical modeling of drug dissolution. International Journal of Pharmaceutics, 2013, 453, 12-24.	2.6	338
4	How porosity and size affect the drug release mechanisms from PLGA-based microparticles. International Journal of Pharmaceutics, 2006, 314, 198-206.	2.6	287
5	Polymer blends for controlled release coatings. Journal of Controlled Release, 2008, 125, 1-15.	4.8	267
6	How Autocatalysis Accelerates Drug Release from PLGA-Based Microparticles:Â A Quantitative Treatment. Biomacromolecules, 2005, 6, 2312-2319.	2.6	257
7	PLGA-based drug delivery systems: Importance of the type of drug and device geometry. International Journal of Pharmaceutics, 2008, 354, 95-103.	2.6	215
8	Diffusion-controlled drug delivery systems: calculation of the required composition to achieve desired release profiles. Journal of Controlled Release, 1999, 60, 379-389.	4.8	146
9	Effects of the type of release medium on drug release from PLGA-based microparticles: Experiment and theory. International Journal of Pharmaceutics, 2006, 314, 189-197.	2.6	141
10	Blends of enteric and GIT-insoluble polymers used for film coating: physicochemical characterization and drug release patterns. Journal of Controlled Release, 2003, 89, 457-471.	4.8	120
11	Polymer Blends Used for the Coating of Multiparticulates: Comparison of Aqueous and Organic Coating Techniques. Pharmaceutical Research, 2004, 21, 882-890.	1.7	107
12	Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. Journal of Controlled Release, 2004, 99, 1-13.	4.8	105
13	Sustained release of nanosized complexes of polyethylenimine and anti-TGF- \hat{l}^2 2 oligonucleotide improves the outcome of glaucoma surgery. Journal of Controlled Release, 2006, 112, 369-381.	4.8	93
14	How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. Journal of Controlled Release, 2007, 119, 182-189.	4.8	93
15	Drugs acting as plasticizers in polymeric systems: A quantitative treatment. Journal of Controlled Release, 2006, 115, 298-306.	4.8	87
16	Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies. Journal of Controlled Release, 2015, 213, 120-127.	4.8	80
17	Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: Preparation and physicochemical characterization. International Journal of Pharmaceutics, 2006, 314, 127-136.	2.6	77
18	Prediction of drug release from ethylcellulose coated pellets. Journal of Controlled Release, 2009, 135, 71-79.	4.8	77

#	Article	IF	CITATIONS
19	Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. Journal of Controlled Release, 2019, 306, 97-107.	4.8	77
20	Local controlled drug delivery to the brain: Mathematical modeling of the underlying mass transport mechanisms. International Journal of Pharmaceutics, 2006, 314, 101-119.	2.6	76
21	pH-Sensitive Polymer Blends Used as Coating Materials to Control Drug Release from Spherical Beads: Elucidation of the Underlying Mass Transport Mechanisms. Pharmaceutical Research, 2005, 22, 1129-1141.	1.7	72
22	Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. International Journal of Pharmaceutics, 2016, 514, 189-199.	2.6	71
23	Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. Journal of Controlled Release, 2005, 110, 67-78.	4.8	70
24	Drug release from lipid-based implants: Elucidation of the underlying mass transport mechanisms. International Journal of Pharmaceutics, 2006, 314, 137-144.	2.6	66
25	Drug release from PLGA-based microparticles: Effects of the "microparticle:bulk fluid―ratio. International Journal of Pharmaceutics, 2010, 383, 123-131.	2.6	66
26	Mathematical modeling of drug release from lipid dosage forms. International Journal of Pharmaceutics, 2011, 418, 42-53.	2.6	64
27	Mechanisms controlling protein release from lipidic implants: Effects of PEG addition. Journal of Controlled Release, 2007, 118, 161-168.	4.8	63
28	Blends of aqueous polymer dispersions used for pellet coating: Importance of the particle size. Journal of Controlled Release, 2005, 105, 226-239.	4.8	61
29	Curing of aqueous polymeric film coatings: Importance of the coating level and type of plasticizer. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 362-370.	2.0	60
30	In situ forming implants for periodontitis treatment with improved adhesive properties. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 342-350.	2.0	60
31	Porous hydroxyapatite tablets as carriers for low-dosed drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 498-506.	2.0	59
32	Modeling drug release from PVAc/PVP matrix tablets. Journal of Controlled Release, 2010, 141, 216-222.	4.8	59
33	Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. International Journal of Pharmaceutics, 2012, 437, 20-28.	2.6	58
34	Bone implants modified with cyclodextrin: Study of drug release in bulk fluid and into agarose gel. International Journal of Pharmaceutics, 2010, 400, 74-85.	2.6	57
35	Novel polymeric film coatings for colon targeting: Drug release from coated pellets. European Journal of Pharmaceutical Sciences, 2009, 37, 427-433.	1.9	56
36	Drug release mechanisms from ethylcellulose: PVA-PEG graft copolymer-coated pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 130-137.	2.0	55

#	Article	IF	Citations
37	Effects of film coating thickness and drug layer uniformity on in vitro drug release from sustained-release coated pellets: A case study using terahertz pulsed imaging. International Journal of Pharmaceutics, 2009, 382, 151-159.	2.6	53
38	In-situ forming PLGA implants for intraocular dexamethasone delivery. International Journal of Pharmaceutics, 2018, 548, 337-348.	2.6	52
39	Clinical translation of advanced colonic drug delivery technologies. Advanced Drug Delivery Reviews, 2022, 181, 114076.	6.6	51
40	How to improve the storage stability of aqueous polymeric film coatings. Journal of Controlled Release, 2008, 126, 26-33.	4.8	46
41	Controlled drug release from Gelucire-based matrix pellets: Experiment and theory. International Journal of Pharmaceutics, 2006, 317, 136-143.	2.6	44
42	Predictability of drug release from cochlear implants. Journal of Controlled Release, 2012, 159, 60-68.	4.8	43
43	pH-Sensitive Polymer Blends used as Coating Materials to Control Drug Release from Spherical Beads:Â Importance of the Type of Core. Biomacromolecules, 2005, 6, 2074-2083.	2.6	40
44	Drug release mechanisms of compressed lipid implants. International Journal of Pharmaceutics, 2011, 404, 27-35.	2.6	40
45	Towards More Realistic In Vitro Release Measurement Techniques for Biodegradable Microparticles. Pharmaceutical Research, 2009, 26, 691-699.	1.7	39
46	Aqueous HPMCAS coatings: Effects of formulation and processing parameters on drug release and mass transport mechanisms. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 262-269.	2.0	38
47	Drug release mechanisms from Kollicoat SR:Eudragit NE coated pellets. International Journal of Pharmaceutics, 2011, 409, 30-37.	2.6	38
48	Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 526-533.	2.0	38
49	Chitosan-clay nanocomposite microparticles for controlled drug delivery: Effects of the MAS content and TPP crosslinking. Journal of Drug Delivery Science and Technology, 2017, 40, 1-10.	1.4	37
50	New Insight into the Role of Polyethylene Glycol Acting as Protein Release Modifier in Lipidic Implants. Pharmaceutical Research, 2007, 24, 1527-1537.	1.7	35
51	Stability of aqueous polymeric controlled release film coatings. International Journal of Pharmaceutics, 2013, 457, 437-445.	2.6	35
52	Ethanol-resistant polymeric film coatings for controlled drug delivery. Journal of Controlled Release, 2013, 169, 1-9.	4.8	35
53	In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance. International Journal of Pharmaceutics, 2015, 486, 38-51.	2.6	35
54	Importance of PLGA microparticle swelling for the control of prilocaine release. Journal of Drug Delivery Science and Technology, 2015, 30, 123-132.	1.4	35

#	Article	IF	Citations
55	Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug. International Journal of Pharmaceutics, 2011, 409, 289-296.	2.6	34
56	Mechanistic analysis of PLGA/HPMC-based in-situ forming implants for periodontitis treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 273-283.	2.0	34
57	In vivo efficacy of microbiota-sensitive coatings for colon targeting: A promising tool for IBD therapy. Journal of Controlled Release, 2015, 197, 121-130.	4.8	34
58	Lipid implants as drug delivery systems. Expert Opinion on Drug Delivery, 2008, 5, 291-307.	2.4	33
59	A novel mathematical model quantifying drug release from lipid implants. Journal of Controlled Release, 2008, 128, 233-240.	4.8	32
60	Using Milling To Explore Physical States: The Amorphous and Polymorphic Forms of Dexamethasone. Crystal Growth and Design, 2018, 18, 1748-1757.	1.4	32
61	Colon targeting with bacteria-sensitive films adapted to the disease state. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 74-81.	2.0	31
62	Drug release mechanisms of cast lipid implants. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 394-400.	2.0	31
63	PLGA microparticles with zero-order release of the labile anti-Parkinson drug apomorphine. International Journal of Pharmaceutics, 2013, 443, 68-79.	2.6	31
64	Deeper insight into the drug release mechanisms in Eudragit RL-based delivery systems. International Journal of Pharmaceutics, 2010, 389, 139-146.	2.6	30
65	In vitro release studies of insulin from lipid implants in solution and in a hydrogel matrix mimicking the subcutis. European Journal of Pharmaceutical Sciences, 2016, 81, 103-112.	1.9	30
66	pH-sensitive film coatings: Towards a better understanding and facilitated optimization. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 2-10.	2.0	29
67	Improved long term stability of aqueous ethylcellulose film coatings: Importance of the type of drug and starter core. International Journal of Pharmaceutics, 2009, 368, 138-145.	2.6	29
68	Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration. Drug Development and Industrial Pharmacy, 2015, 41, 2037-2044.	0.9	29
69	MALDI-TOF MS imaging of controlled release implants. Journal of Controlled Release, 2012, 161, 98-108.	4.8	27
70	Predicting drug release from HPMC/lactose tablets. International Journal of Pharmaceutics, 2013, 441, 826-834.	2.6	26
71	Characterization and optimization of GMO-based gels with long term release for intraarticular administration. International Journal of Pharmaceutics, 2013, 451, 95-103.	2.6	26
72	Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment. International Journal of Pharmaceutics, 2017, 521, 282-293.	2.6	26

#	Article	IF	CITATIONS
73	Novel polymeric film coatings for colon targeting: How to adjust desired membrane properties. International Journal of Pharmaceutics, 2009, 371, 64-70.	2.6	25
74	Trans-Oval-Window Implants, A New Approach for Drug Delivery to the Inner Ear. Otology and Neurotology, 2015, 36, 1572-1579.	0.7	25
75	In-situ forming implants loaded with chlorhexidine and ibuprofen for periodontal treatment: Proof of concept study in vivo. International Journal of Pharmaceutics, 2019, 569, 118564.	2.6	25
76	Dynamic and static curing of ethylcellulose:PVA–PEG graft copolymer film coatings. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 455-461.	2.0	24
77	Controlled release implants based on cast lipid blends. European Journal of Pharmaceutical Sciences, 2011, 43, 78-83.	1.9	24
78	PEO hot melt extrudates for controlled drug delivery: Importance of the molecular weight. Journal of Drug Delivery Science and Technology, 2016, 36, 130-140.	1.4	24
79	Characterisation of quaternary polymethacrylate films containing tartaric acid, metoprolol free base or metoprolol tartrate. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 366-372.	2.0	23
80	Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions. International Journal of Pharmaceutics, 2019, 572, 118819.	2.6	23
81	Limited drug solubility can be decisive even for freely soluble drugs in highly swollen matrix tablets. International Journal of Pharmaceutics, 2017, 526, 280-290.	2.6	22
82	Ear Cubes for local controlled drug delivery to the inner ear. International Journal of Pharmaceutics, 2016, 509, 85-94.	2.6	21
83	Modeling drug release from hot-melt extruded mini-matrices with constant and non-constant diffusivities. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 292-301.	2.0	20
84	How to easily provide zero order release of freely soluble drugs from coated pellets. International Journal of Pharmaceutics, 2015, 478, 31-38.	2.6	20
85	Porous pellets as drug delivery system. Drug Development and Industrial Pharmacy, 2009, 35, 655-662.	0.9	18
86	Enzymatically degraded Eurylon 6 HP-PG: ethylcellulose film coatings for colon targeting in inflammatory bowel disease patients. Journal of Pharmacy and Pharmacology, 2010, 62, 1676-1684.	1.2	18
87	Peas starchâ€based film coatings for siteâ€specific drug delivery to the colon. Journal of Applied Polymer Science, 2011, 119, 1176-1184.	1.3	18
88	Drug release from extruded solid lipid matrices: Theoretical predictions and independent experiments. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 122-129.	2.0	18
89	Impact of the experimental conditions on drug release from parenteral depot systems: From negligible to significant. International Journal of Pharmaceutics, 2012, 432, 11-22.	2.6	18
90	Simultaneous controlled vitamin release from multiparticulates: Theory and experiment. International Journal of Pharmaceutics, 2011, 412, 68-76.	2.6	17

#	Article	IF	Citations
91	In-situ forming implants for the treatment of periodontal diseases: Simultaneous controlled release of an antiseptic and an anti-inflammatory drug. International Journal of Pharmaceutics, 2019, 572, 118833.	2.6	17
92	Carrageenan as an Efficient Drug Release Modifier for Ethylcellulose-Coated Pharmaceutical Dosage Forms. Biomacromolecules, 2007, 8, 3984-3991.	2.6	16
93	Cast Lipid Implants for Controlled Drug Delivery: Importance of the Tempering Conditions. Journal of Pharmaceutical Sciences, 2011, 100, 3471-3481.	1.6	16
94	Crystalline Polymorphism Emerging From a Milling-Induced Amorphous Form: The Case of Chlorhexidine Dihydrochloride. Journal of Pharmaceutical Sciences, 2018, 107, 121-126.	1.6	16
95	Characterization of ethylcellulose: starch-based film coatings for colon targeting. Drug Development and Industrial Pharmacy, 2009, 35, 1190-1200.	0.9	15
96	Non-coated multiparticulate matrix systems for colon targeting. Drug Development and Industrial Pharmacy, 2011, 37, 1150-1159.	0.9	15
97	Fenofibrate-loaded PLGA microparticles: Effects on ischemic stroke. European Journal of Pharmaceutical Sciences, 2009, 37, 43-52.	1.9	14
98	Diffusion Controlled Drug Delivery Systems. , 2012, , 127-152.		14
99	PLGAs bearing carboxylated side chains: Novel matrix formers with improved properties for controlled drug delivery. Journal of Controlled Release, 2013, 166, 256-267.	4.8	14
100	Towards a better understanding of the release mechanisms of caffeine from PLGA microparticles. Journal of Applied Polymer Science, 2020, 137, 48710.	1.3	14
101	Controlled delivery of a new broad spectrum antibacterial agent against colitis: In vitro and in vivo performance. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 152-161.	2.0	13
102	Controlled release tablets based on HPMC:lactose blends. Journal of Drug Delivery Science and Technology, 2019, 52, 607-617.	1.4	13
103	Injection Molded Capsules for Colon Delivery Combining Time-Controlled and Enzyme-Triggered Approaches. International Journal of Molecular Sciences, 2020, 21, 1917.	1.8	13
104	Ethanol-resistant ethylcellulose/guar gum coatings – Importance of formulation parameters. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1250-1258.	2.0	12
105	Fatty acids for controlled release applications: A comparison between prilling and solid lipid extrusion as manufacturing techniques. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 173-184.	2.0	12
106	Importance of air bubbles in the core of coated pellets: Synchrotron X-ray microtomography allows for new insights. Journal of Controlled Release, 2016, 237, 125-137.	4.8	12
107	Coloring of PLGA implants to better understand the underlying drug release mechanisms. International Journal of Pharmaceutics, 2019, 569, 118563.	2.6	12
108	Hybrid Ear Cubes for local controlled dexamethasone delivery to the inner ear. European Journal of Pharmaceutical Sciences, 2019, 126, 23-32.	1.9	12

#	Article	IF	Citations
109	In-situ forming implants for dual controlled release of chlorhexidine and ibuprofen for periodontitis treatment: Microbiological and mechanical key properties. Journal of Drug Delivery Science and Technology, 2020, 60, 101956.	1.4	12
110	How to adjust dexamethasone mobility in silicone matrices: A quantitative treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 27-37.	2.0	11
111	Quaternary polymethacrylate–magnesium aluminum silicate films: Water uptake kinetics and film permeability. International Journal of Pharmaceutics, 2015, 490, 165-172.	2.6	10
112	In-situ forming PLGA implants: How additives affect swelling and drug release. Journal of Drug Delivery Science and Technology, 2019, 53, 101180.	1.4	10
113	Mechanisms Controlling Theophylline Release from Ethanol-Resistant Coated Pellets. Pharmaceutical Research, 2014, 31, 731-741.	1.7	9
114	Antibiotic Use in Periodontal Therapy among French Dentists and Factors Which Influence Prescribing Practices. Antibiotics, 2021, 10, 303.	1.5	9
115	Swelling Controlled Drug Delivery Systems. , 2012, , 153-170.		8
116	Preparation of polymeric fenofibrate formulations with accelerated drug release: Solvent evaporation versus co-grinding. Journal of Drug Delivery Science and Technology, 2015, 30, 397-407.	1.4	8
117	Eudragit RL-based film coatings: How to minimize sticking and adjust drug release using MAS. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 126-133.	2.0	8
118	Simulated food effects on drug release from ethylcellulose: PVA–PEG graft copolymer-coated pellets. Drug Development and Industrial Pharmacy, 2010, 36, 173-179.	0.9	7
119	In silico simulation of niacin release from lipid tablets: Theoretical predictions and independent experiments. Journal of Controlled Release, 2014, 175, 63-71.	4.8	7
120	Oral colon delivery platform based on a novel combination approach: Design concept and preliminary evaluation. Journal of Drug Delivery Science and Technology, 2021, 66, 102919.	1.4	7
121	In-situ forming drug-delivery systems for periodontal treatment: current knowledge and perspectives. Biomedical Materials (Bristol), 2021, 16, 062003.	1.7	6
122	When drugs plasticize film coatings: Unusual formulation effects observed with metoprolol and Eudragit RS. International Journal of Pharmaceutics, 2018, 539, 39-49.	2.6	5
123	Hot melt extruded polysaccharide blends for controlled drug delivery. Journal of Drug Delivery Science and Technology, 2019, 54, 101317.	1.4	5
124	Effect of Lactobacillus reuteri on Gingival Inflammation and Composition of the Oral Microbiota in Patients Undergoing Treatment with Fixed Orthodontic Appliances: Study Protocol of a Randomized Control Trial. Pathogens, 2022, 11, 112.	1.2	5
125	Injection-molded capsule bodies and caps based on polymer blends for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 168, 1-14.	2.0	4
126	Towards a Better Understanding of Verapamil Release from Kollicoat SR:IR Coated Pellets Using Non-Invasive Analytical Tools. Pharmaceutics, 2021, 13, 1723.	2.0	3

#	Article	IF	CITATIONS
127	How Adding Chlorhexidine or Metallic Nanoparticles Affects the Antimicrobial Performance of Calcium Hydroxide Paste as an Intracanal Medication: An In Vitro Study. Antibiotics, 2021, 10, 1352.	1.5	3
128	Microparticles Used as Drug Delivery Systems. , 2006, , 15-21.		2
129	The Modified-Release Drug Delivery Landscape. , 2008, , 17-34.		2
130	Antimicrobial effect and physical properties of an injectable "active oxygen" gel for the treatment of periodontitis. American Journal of Dentistry, 2020, 33, 305-309.	0.1	1