
Susana LÃ³pez Charreton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structures of Two Human Astrovirus Capsid/Neutralizing Antibody Complexes Reveal Distinct Epitopes and Inhibition of Virus Attachment to Cells. Journal of Virology, 2022, 96, JVI0141521.	1.5	6
2	Genomic Characterization of SARS-CoV-2 Isolated from Patients with Distinct Disease Outcomes in Mexico. Microbiology Spectrum, 2022, , e0124921.	1.2	5
3	Pooling saliva samples as an excellent option to increase the surveillance for SARS-CoV-2 when re-opening community settings. PLoS ONE, 2022, 17, e0263114.	1.1	11
4	High Prevalence and Diversity of Caliciviruses in a Community Setting Determined by a Metagenomic Approach. Microbiology Spectrum, 2022, 10, e0185321.	1.2	3
5	Lipid metabolism is involved in the association of rotavirus viroplasms with endoplasmic reticulum membranes. Virology, 2022, 569, 29-36.	1.1	7
6	The Alpha Variant (B.1.1.7) of SARS-CoV-2 Failed to Become Dominant in Mexico. Microbiology Spectrum, 2022, 10, e0224021.	1.2	21
7	Biographical Feature: James H. Strauss, Jr. (1938–2021). Journal of Virology, 2022, , e0015522.	1.5	Ο
8	Dominance of Three Sublineages of the SARS-CoV-2 Delta Variant in Mexico. Viruses, 2022, 14, 1165.	1.5	12
9	The Capsid Precursor Protein of Astrovirus VA1 Is Proteolytically Processed Intracellularly. Journal of Virology, 2022, 96, .	1.5	6
10	The Association of Human Astrovirus with Extracellular Vesicles Facilitates Cell Infection and Protects the Virus from Neutralizing Antibodies. Journal of Virology, 2022, 96, .	1.5	4
11	The gut virome of healthy children during the first year of life is diverse and dynamic. PLoS ONE, 2021, 16, e0240958.	1.1	26
12	Rotavirus cell entry: not so simple after all. Current Opinion in Virology, 2021, 48, 42-48.	2.6	25
13	Protein Disulfide Isomerase A4 Is Involved in Genome Uncoating during Human Astrovirus Cell Entry. Viruses, 2021, 13, 53.	1.5	18
14	Genetic Analysis of SARS-CoV-2 Variants in Mexico during the First Year of the COVID-19 Pandemic. Viruses, 2021, 13, 2161.	1.5	32
15	An Optimized Reverse Genetics System Suitable for Efficient Recovery of Simian, Human, and Murine-Like Rotaviruses. Journal of Virology, 2020, 94, .	1.5	40
16	Rotaviruses Associate with Distinct Types of Extracellular Vesicles. Viruses, 2020, 12, 763.	1.5	14
17	Saliva Sampling and Its Direct Lysis, an Excellent Option To Increase the Number of SARS-CoV-2 Diagnostic Tests in Settings with Supply Shortages. Journal of Clinical Microbiology, 2020, 58, .	1.8	58
18	Tobamoviruses can be frequently present in the oropharynx and gut of infants during their first year of life. Scientific Reports, 2020, 10, 13595.	1.6	18

#	Article	IF	CITATIONS
19	Genomic Analysis of Early SARS-CoV-2 Variants Introduced in Mexico. Journal of Virology, 2020, 94, .	1.5	32
20	Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nature Microbiology, 2020, 5, 443-454.	5.9	114
21	Development of a novel DNA based reverse genetics system for classic human astroviruses. Virology, 2019, 535, 130-135.	1.1	4
22	The Guanine Nucleotide Exchange Factor GBF1 Participates in Rotavirus Replication. Journal of Virology, 2019, 93, .	1.5	15
23	The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus Research, 2019, 263, 27-33.	1.1	14
24	Isolation of Neutralizing Monoclonal Antibodies to Human Astrovirus and Characterization of Virus Variants That Escape Neutralization. Journal of Virology, 2019, 93, .	1.5	26
25	Nanoscale organization of rotavirus replication machineries. ELife, 2019, 8, .	2.8	24
26	Antirotaviral activity of bovine milk components: Extending the list of inhibitory proteins and seeking a better understanding of their neutralization mechanism. Journal of Functional Foods, 2018, 44, 103-111.	1.6	10
27	The Geographic Structure of Viruses in the Cuatro Ciénegas Basin, a Unique Oasis in Northern Mexico, Reveals a Highly Diverse Population on a Small Geographic Scale. Applied and Environmental Microbiology, 2018, 84, .	1.4	43
28	Zika Virus in Salivary Glands of Five Different Species of Wild-Caught Mosquitoes from Mexico. Scientific Reports, 2018, 8, 809.	1.6	48
29	Most rotavirus strains require the cation-independent mannose-6-phosphate receptor, sortilin-1, and cathepsins to enter cells. Virus Research, 2018, 245, 44-51.	1.1	11
30	Actin-Dependent Nonlytic Rotavirus Exit and Infectious Virus Morphogenetic Pathway in Nonpolarized Cells. Journal of Virology, 2018, 92, .	1.5	19
31	Enhancement of VP6 immunogenicity and protective efficacy against rotavirus by VP2 in a genetic immunization. Vaccine, 2018, 36, 3072-3078.	1.7	7
32	The Ubiquitin-Proteasome System Is Necessary for Efficient Replication of Human Astrovirus. Journal of Virology, 2018, 92, .	1.5	14
33	Rotavirus RNAs sponge host cell RNA binding proteins and interfere with their subcellular localization. Virology, 2018, 525, 96-105.	1.1	11
34	Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host and Microbe, 2018, 23, 855-864.e7.	5.1	82
35	Minimal capsid composition of infectious human astrovirus. Virology, 2018, 521, 58-61.	1.1	13
36	Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Research in Veterinary Science, 2017, 111, 55-62.	0.9	19

#	Article	IF	CITATIONS
37	Rotavirus Biology. , 2017, , 19-42.		1
38	Rotavirus Attachment, Internalization, and Vesicular Traffic. , 2016, , 103-119.		3
39	Stress Response and Translation Control in Rotavirus Infection. Viruses, 2016, 8, 162.	1.5	12
40	Complete Genome Sequence of Human Coronavirus OC43 Isolated from Mexico. Genome Announcements, 2016, 4, .	0.8	2
41	Rotavirus Strategies Against the Innate Antiviral System. Annual Review of Virology, 2016, 3, 591-609.	3.0	29
42	Polarized rotavirus entry and release from differentiated small intestinal cells. Virology, 2016, 499, 65-71.	1.1	18
43	The tyrosine kinase inhibitor genistein induces the detachment of rotavirus particles from the cell surface. Virus Research, 2015, 210, 141-148.	1.1	11
44	Rhinovirus is an important pathogen in upper and lower respiratory tract infections in Mexican children. Virology Journal, 2015, 12, 31.	1.4	20
45	Prevalence of respiratory virus in symptomatic children in private physician office settings in five communities of the state of Veracruz, Mexico. BMC Research Notes, 2015, 8, 261.	0.6	13
46	Rotavirus Controls Activation of the 2′-5′-Oligoadenylate Synthetase/RNase L Pathway Using at Least Two Distinct Mechanisms. Journal of Virology, 2015, 89, 12145-12153.	1.5	36
47	The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology, 2015, 475, 172-178.	1.1	46
48	DNA Microarray for Detection of Gastrointestinal Viruses. Journal of Clinical Microbiology, 2015, 53, 136-145.	1.8	41
49	Rotavirus Entry: a Deep Journey into the Cell with Several Exits. Journal of Virology, 2015, 89, 890-893.	1.5	82
50	Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Mexico from 2003 to 2012. PLoS ONE, 2014, 9, e102453.	1.1	5
51	Is There Still Room for Novel Viral Pathogens in Pediatric Respiratory Tract Infections?. PLoS ONE, 2014, 9, e113570.	1.1	32
52	Rotaviruses Reach Late Endosomes and Require the Cation-Dependent Mannose-6-Phosphate Receptor and the Activity of Cathepsin Proteases To Enter the Cell. Journal of Virology, 2014, 88, 4389-4402.	1.5	46
53	Characterization of Human Astrovirus Cell Entry. Journal of Virology, 2014, 88, 2452-2460.	1.5	46
54	PhyloFlu, a DNA Microarray for Determining the Phylogenetic Origin of Influenza A Virus Gene Segments and the Genomic Fingerprint of Viral Strains. Journal of Clinical Microbiology, 2014, 52, 803-813.	1.8	7

#	Article	IF	CITATIONS
55	Gangliosides Have a Functional Role during Rotavirus Cell Entry. Journal of Virology, 2013, 87, 1115-1122.	1.5	61
56	The Spike Protein VP4 Defines the Endocytic Pathway Used by Rotavirus To Enter MA104 Cells. Journal of Virology, 2013, 87, 1658-1663.	1.5	41
57	Rotavirus Prevents the Expression of Host Responses by Blocking the Nucleocytoplasmic Transport of Polyadenylated mRNAs. Journal of Virology, 2013, 87, 6336-6345.	1.5	37
58	Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proceedings of the United States of America, 2013, 110, 10270-10275.	3.3	71
59	Inhibiting Rotavirus Infection by Membrane-Impermeant Thiol/Disulfide Exchange Blockers and Antibodies against Protein Disulfide Isomerase. Intervirology, 2012, 55, 451-464.	1.2	41
60	Characterization of an influenza A virus in Mexican swine that is related to the A/H1N1/2009 pandemic clade. Virology, 2012, 433, 176-182.	1.1	17
61	Rotavirus–host cell interactions: an arms race. Current Opinion in Virology, 2012, 2, 389-398.	2.6	23
62	Methods suitable for high-throughput screening of siRNAs and other chemical compounds with the potential to inhibit rotavirus replication. Journal of Virological Methods, 2012, 179, 242-249.	1.0	8
63	Replication of the Rotavirus Genome Requires an Active Ubiquitin-Proteasome System. Journal of Virology, 2011, 85, 11964-11971.	1.5	62
64	Rotavirus Infection Induces the Unfolded Protein Response of the Cell and Controls It through the Nonstructural Protein NSP3. Journal of Virology, 2011, 85, 12594-12604.	1.5	55
65	Different Rotavirus Strains Enter MA104 Cells through Different Endocytic Pathways: the Role of Clathrin-Mediated Endocytosis. Journal of Virology, 2010, 84, 9161-9169.	1.5	92
66	Protein Kinase R Is Responsible for the Phosphorylation of eIF2α in Rotavirus Infection. Journal of Virology, 2010, 84, 10457-10466.	1.5	76
67	Characterization of viroplasm formation during the early stages of rotavirus infection. Virology Journal, 2010, 7, 350.	1.4	29
68	Rotaviruses require basolateral molecules for efficient infection of polarized MDCKII cells. Virus Research, 2010, 147, 231-241.	1.1	10
69	Analysis of the Kinetics of Transcription and Replication of the Rotavirus Genome by RNA Interference. Journal of Virology, 2009, 83, 8819-8831.	1.5	39
70	Molecular Anatomy of 2009 Influenza Virus A (H1N1). Archives of Medical Research, 2009, 40, 643-654.	1.5	60
71	Dissecting the role of integrin subunits α2 and β3 in rotavirus cell entry by RNA silencing. Virus Research, 2009, 145, 251-259.	1.1	5
72	Rotavirus Infection Induces the Phosphorylation of eIF2α but Prevents the Formation of Stress Granules. Journal of Virology, 2008, 82, 1496-1504.	1.5	125

SUSANA LÃ³PEZ CHARRETON

#	Article	IF	CITATIONS
73	Rotavirus cell entry. Future Virology, 2008, 3, 135-146.	0.9	9
74	Endoplasmic Reticulum Chaperones Are Involved in the Morphogenesis of Rotavirus Infectious Particles. Journal of Virology, 2008, 82, 5368-5380.	1.5	59
75	Early Events of Rotavirus Infection: The Search for the Receptor(s). Novartis Foundation Symposium, 2008, 238, 47-63.	1.2	17
76	Hsp70 Negatively Controls Rotavirus Protein Bioavailability in Caco-2 Cells Infected by the Rotavirus RF Strain. Journal of Virology, 2007, 81, 1297-1304.	1.5	44
77	Early Steps in Rotavirus Cell Entry. , 2006, 309, 39-66.		92
78	Production of Rotavirus-Like Particles in Tomato (Lycopersicon esculentumL.) Fruit by Expression of Capsid Proteins VP2 and VP6 and Immunological Studies. Viral Immunology, 2006, 19, 42-53.	0.6	45
79	Heat shock enhances the susceptibility of BHK cells to rotavirus infection through the facilitation of entry and post-entry virus replication steps. Virus Research, 2006, 121, 74-83.	1.1	9
80	Role of sialic acids in rotavirus infection. Glycoconjugate Journal, 2006, 23, 27-37.	1.4	112
81	Rotavirus Vaccine: Early Introduction in Latin America—Risks and Benefits. Archives of Medical Research, 2006, 37, 1-10.	1.5	14
82	The Peptide-Binding and ATPase Domains of Recombinant hsc70 Are Required To Interact with Rotavirus and Reduce Its Infectivity. Journal of Virology, 2006, 80, 3322-3331.	1.5	51
83	Rotavirus Nonstructural Protein NSP3 Is Not Required for Viral Protein Synthesis. Journal of Virology, 2006, 80, 9031-9038.	1.5	80
84	Reduced expression of the rotavirus NSP5 gene has a pleiotropic effect on virus replication. Journal of General Virology, 2005, 86, 1609-1617.	1.3	75
85	Silencing the Morphogenesis of Rotavirus. Journal of Virology, 2005, 79, 184-192.	1.5	112
86	Characterization of Rotavirus Cell Entry. Journal of Virology, 2004, 78, 2310-2318.	1.5	112
87	VP7 Mediates the Interaction of Rotaviruses with Integrin αvβ3 through a Novel Integrin-Binding Site. Journal of Virology, 2004, 78, 10839-10847.	1.5	53
88	Prevalence and Genetic Diversity of Human Astroviruses in Mexican Children with Symptomatic and Asymptomatic Infections. Journal of Clinical Microbiology, 2004, 42, 151-157.	1.8	81
89	The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. Journal of Cell Science, 2004, 117, 5509-5519.	1.2	130
90	Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology, 2004, 322, 370-381.	1.1	53

#	Article	IF	CITATIONS
91	Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of infected insect cell cultures. Biochemical Engineering Journal, 2004, 19, 87-93.	1.8	42
92	Preface. Virus Research, 2004, 102, 1-2.	1.1	3
93	RNA silencing of rotavirus gene expression. Virus Research, 2004, 102, 43-51.	1.1	38
94	Multistep entry of rotavirus into cells: a Versaillesque dance. Trends in Microbiology, 2004, 12, 271-278.	3.5	183
95	Rotavirus Diarrhea Severity Is Related to the VP4 Type in Mexican Children. Journal of Clinical Microbiology, 2003, 41, 3158-3162.	1.8	21
96	Interaction of Rotaviruses with Hsc70 during Cell Entry Is Mediated by VP5. Journal of Virology, 2003, 77, 7254-7260.	1.5	92
97	ll, 3. Attachment and post-attachment receptors for rotavirus. Perspectives in Medical Virology, 2003, 9, 143-163.	0.1	6
98	Proteolytic Processing of a Serotype 8 Human Astrovirus ORF2 Polyprotein. Journal of Virology, 2002, 76, 7996-8002.	1.5	79
99	Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry. Journal of Virology, 2002, 76, 4096-4102.	1.5	152
100	Molecular Biology of Rotavirus Cell Entry. Archives of Medical Research, 2002, 33, 356-361.	1.5	65
101	Strategies for manipulating the relative concentration of recombinant rotavirus structural proteins during simultaneous production by insect cells. Biotechnology and Bioengineering, 2002, 78, 635-644.	1.7	37
102	Influence of Calcium on the Early Steps of Rotavirus Infection. Virology, 2002, 295, 190-200.	1.1	51
103	Rotavirus gene silencing by small interfering RNAs. EMBO Reports, 2002, 3, 1175-1180.	2.0	101
104	Characterization of a Monoclonal Antibody Directed to the Surface of MA104 Cells That Blocks the Infectivity of Rotaviruses. Virology, 2000, 273, 160-168.	1.1	11
105	Integrin α2β1 Mediates the Cell Attachment of the Rotavirus Neuraminidase-Resistant Variant nar3. Virology, 2000, 278, 50-54.	1.1	80
106	Relative localization of viroplasmic and endoplasmic reticulum-resident rotavirus proteins in infected cells. Archives of Virology, 2000, 145, 1963-1973.	0.9	48
107	Rotavirus Spike Protein VP4 Is Present at the Plasma Membrane and Is Associated with Microtubules in Infected Cells. Journal of Virology, 2000, 74, 3313-3320.	1.5	70
108	The VP5 Domain of VP4 Can Mediate Attachment of Rotaviruses to Cells. Journal of Virology, 2000, 74, 593-599.	1.5	87

#	Article	IF	CITATIONS
109	Biochemical Characterization of Rotavirus Receptors in MA104 Cells. Journal of Virology, 2000, 74, 9362-9371.	1.5	101
110	Integrin alpha vbeta 3 mediates rotavirus cell entry. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14644-14649.	3.3	168
111	The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. Journal of General Virology, 2000, 81, 821-830.	1.3	64
112	Entry of Rotaviruses Is a Multistep Process. Virology, 1999, 263, 450-459.	1.1	67
113	In vivo interactions among rotavirus nonstructural proteins. Archives of Virology, 1998, 143, 981-996.	0.9	45
114	ldentification of two independent neutralization domains on the VP4 trypsin cleavage products VP5* and VP8* of human rotavirus ST3. Virology, 1995, 206, 148-154.	1.1	51
115	Mapping the Subgroup Epitopes of Rotavirus Protein VP6. Virology, 1994, 204, 153-162.	1.1	45
116	Amino acid sequence of the porcine rotavirus YM VP1 protein. Research in Virology, 1994, 145, 313-317.	0.7	7
117	Immunological characterization of a rotavirus-neutralizing epitope fused to the cholera toxin B subunit. Gene, 1993, 133, 227-232.	1.0	21
118	Protein NS26 is highly conserved among porcine rotavirus strains. Nucleic Acids Research, 1993, 21, 1042-1042.	6.5	11
119	Genomic rearrangements in human rotavirus strain Wa; analysis of rearranged RNA segment 7. Archives of Virology, 1992, 125, 331-338.	0.9	20
120	Synthesis of the surface glycoprotein of rotavirus SA11 in the aroA strain of Salmonella typhimurium SL3261. Research in Microbiology, 1990, 141, 883-886.	1.0	22
121	Naturally occurring serotype 2/subgroup II rotavirus reassortants in Northern Brazil. Virus Research, 1989, 14, 235-240.	1.1	24
122	The nucleotide sequence of the 5′ and 3′ ends of rota virus SA11 gene 4. Nucleic Acids Research, 1987, 15, 4691-4691.	6.5	20
123	Conservation in rotaviruses of the protein region containing the two sites associated with trypsin enhancement of infectivity. Virology, 1986, 154, 224-227.	1.1	53
124	The nonstructural proteins of sindbis virus as studied with an antibody specific for the C terminus of the nonstructural readthrough polyprotein. Virology, 1985, 141, 235-247.	1.1	28
125	Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology, 1985, 144, 11-19.	1.1	130