
Jiang Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6396325/publications.pdf Version: 2024-02-01

ΙΔΝΟ ΡΑΝ

#	Article	IF	CITATIONS
1	Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochemistry, 2008, 43, 626-633.	3.7	86
2	Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene–water biphasic system. Journal of Biotechnology, 2011, 152, 24-29.	3.8	62
3	An Unusual (<i>R</i>)â€Selective Epoxide Hydrolase with High Activity for Facile Preparation of Enantiopure Glycidyl Ethers. Advanced Synthesis and Catalysis, 2011, 353, 1510-1518.	4.3	46
4	Switching Cofactor Dependence of 7β-Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catalysis, 2019, 9, 466-473.	11.2	46
5	Bioproduction of chiral mandelate by enantioselective deacylation of α-acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp. ECU1011. Applied Microbiology and Biotechnology, 2010, 86, 83-91.	3.6	41
6	Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration. Applied Biochemistry and Biotechnology, 2020, 192, 530-543.	2.9	32
7	Bioreduction of methyl o-chlorobenzoylformate at 500gLâ^1 without external cofactors for efficient production of enantiopure clopidogrel intermediate. Tetrahedron Letters, 2012, 53, 4715-4717.	1.4	27
8	Efficient synthesis of a statin precursor in high space-time yield by a new aldehyde-tolerant aldolase identified from Lactobacillus brevis. Catalysis Science and Technology, 2015, 5, 4048-4054.	4.1	27
9	Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). Bioresources and Bioprocessing, 2017, 4, 37.	4.2	27
10	Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. ChemBioChem, 2020, 21, 2680-2688.	2.6	26
11	Efficient production of diltiazem chiral intermediate using immobilized lipase from Serratia marcescens. Biotechnology and Bioprocess Engineering, 2010, 15, 199-207.	2.6	23
12	Optimization and Scale-up of a Bioreduction Process for Preparation of Ethyl (<i>S</i>)-4-Chloro-3-hydroxybutanoate. Organic Process Research and Development, 2014, 18, 739-743.	2.7	23
13	Significantly improved asymmetric oxidation of sulfide with resting cells of Rhodococcus sp. in a biphasic system. Process Biochemistry, 2011, 46, 689-694.	3.7	20
14	Efficient Synthesis of 12â€Oxochenodeoxycholic Acid Using a 12αâ€Hydroxysteroid Dehydrogenase from <i>Rhodococcus ruber</i> . Advanced Synthesis and Catalysis, 2019, 361, 4661-4668.	4.3	20
15	Design of a self-sufficient hydride-shuttling cascade for concurrent bioproduction of 7,12-dioxolithocholate and <scp>l</scp> - <i>tert</i> -leucine. Green Chemistry, 2021, 23, 4125-4133.	9.0	16
16	Cloning and Characterization of a Novel Esterase from Rhodococcus sp. for Highly Enantioselective Synthesis of a Chiral Cilastatin Precursor. Applied and Environmental Microbiology, 2014, 80, 7348-7355.	3.1	15
17	Efficient Stereoselective Synthesis of Structurally Diverse γ―and δâ€Lactones Using an Engineered Carbonyl Reductase. ChemCatChem, 2019, 11, 2600-2606.	3.7	15
18	A green-by-design system for efficient bio-oxidation of an unnatural hexapyranose into chiral lactone for building statin side-chains. Catalysis Science and Technology, 2016, 6, 7094-7100.	4.1	12

Jiang Pan

#	Article	IF	CITATIONS
19	Improved production of Pseudomonas sp. ECU1011 acetyl esterase by medium design and fed-batch fermentation. Bioprocess and Biosystems Engineering, 2012, 35, 323-331.	3.4	10
20	Efficient production of ethyl (R)-2-hydroxy-4-phenylbutyrate using a cost-effective reductase expressed in Pichia pastoris. Biochemical Engineering Journal, 2014, 91, 72-77.	3.6	10
21	Enzymatic synthesis of 10-oxostearic acid in high space-time yield via cascade reaction of a new oleate hydratase and an alcohol dehydrogenase. Journal of Biotechnology, 2019, 306, 100008.	3.8	10
22	Efficient Biocatalytic Synthesis of Chiral Chemicals. Advances in Biochemical Engineering/Biotechnology, 2014, 155, 55-106.	1.1	8
23	A green-by-design bioprocess for <scp>l</scp> -carnosine production integrating enzymatic synthesis with membrane separation. Catalysis Science and Technology, 2019, 9, 5971-5978.	4.1	8
24	Engineering of an oleate hydratase for efficient C10-Functionalization of oleic acid. Biochemical and Biophysical Research Communications, 2021, 537, 64-70.	2.1	8
25	Target-oriented discovery of a new esterase-producing strain Enterobacter sp. ECU1107 for whole cell-catalyzed production of (2S,3R)-3-phenylglycidate as a chiral synthon of Taxol. Applied Microbiology and Biotechnology, 2013, 97, 6293-6300.	3.6	7
26	Engineering Bacillus subtilis Isoleucine Dioxygenase for Efficient Synthesis of (2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i>)-4-Hydroxyisoleucine. Journal of Agricultural and Food Chemistry, 2020, 68, 14555-14563.	5.2	7
27	Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester. Applied Biochemistry and Biotechnology, 2017, 183, 543-554.	2.9	6
28	Protein engineering of aldolase LbDERA for enhanced activity toward real substrates with a high-throughput screening method coupled with an aldehyde dehydrogenase. Biochemical and Biophysical Research Communications, 2017, 482, 159-163.	2.1	6
29	Discovery and Engineering of a Novel Baeyerâ€Villiger Monooxygenase with High Normal Regioselectivity. ChemBioChem, 2021, 22, 1190-1195.	2.6	6
30	Carving the Active Site of CYP153A7 Monooxygenase for Improving Terminal Hydroxylation of Mediumâ€Chain Fatty Acids. ChemBioChem, 2022, , .	2.6	6
31	Asymmetric reduction of 2-chloro-3-oxo-ester into enantiomerically high pure diltiazem precursor by a Candida ketoreductase. Molecular Catalysis, 2021, 510, 111670.	2.0	4
32	Co-Cross-Linked Aggregates of Baeyer–Villiger Monooxygenases and Formate Dehydrogenase for Repeated Use in Asymmetric Biooxidation. Organic Process Research and Development, 2022, 26, 1978-1983.	2.7	4
33	Discovery and Engineering of Bacterial (â^')â€Isopiperitenol Dehydrogenases to Enhance (â^')â€Menthol Precursor Biosynthesis. Advanced Synthesis and Catalysis, 2021, 363, 3973-3982.	4.3	3
34	Immobilization of trophic anaerobic acetogen for semi-continuous syngas fermentation. Chinese Journal of Chemical Engineering, 2021, 29, 311-316.	3.5	2