Daniel Alessi

List of Publications by Citations

Source: https://exaly.com/author-pdf/6396323/daniel-alessi-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

159 papers 4,697 citations

38 h-index

64 g-index

162 ext. papers

6,085 ext. citations

7.8 avg, IF

6.18 L-index

#	Paper	IF	Citations
159	Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. <i>Science of the Total Environment</i> , 2018 , 619-620, 815-826	10.2	310
158	Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. <i>Environment International</i> , 2019 , 124, 521-532	12.9	287
157	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. <i>Environment International</i> , 2019 , 126, 336-345	12.9	175
156	Metal contamination and bioremediation of agricultural soils for food safety and sustainability. <i>Nature Reviews Earth & Environment</i> , 2020 , 1, 366-381	30.2	171
155	Effect of production temperature on lead removal mechanisms by rice straw biochars. <i>Science of the Total Environment</i> , 2019 , 655, 751-758	10.2	148
154	Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. <i>Science of the Total Environment</i> , 2018 , 625, 1567-1573	10.2	139
153	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511	11.5	138
152	Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. <i>Journal of Cleaner Production</i> , 2019 , 209, 927-936	10.3	117
151	Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 2512-2528	5.5	114
150	Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. <i>Environment International</i> , 2019 , 122, 357-362	12.9	111
149	Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. <i>Environmental Science & Environmental Science & Envi</i>	10.3	101
148	New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. <i>Soil Use and Management</i> , 2020 , 36, 358-3	88 ^{2.1}	100
147	Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. <i>Water Research</i> , 2017 , 114, 78-87	12.5	94
146	Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction. <i>Environmental Science & Environmental Sci</i>	10.3	89
145	Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach. <i>Environmental Science & Environmental & Envir</i>	10.3	87
144	Trace elements at the intersection of marine biological and geochemical evolution. <i>Earth-Science Reviews</i> , 2016 , 163, 323-348	10.2	86
143	The product of microbial uranium reduction includes multiple species with U(IV)phosphate coordination. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 131, 115-127	5.5	84

142	Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. <i>Science of the Total Environment</i> , 2018 , 619-620, 185-193	10.2	75
141	Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 2015 , 151, 443-9	7.9	71
140	Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV). <i>Environmental Science & Environmental Science & Environme</i>	10.3	69
139	Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. <i>Science of the Total Environment</i> , 2018 , 636, 1241-1248	10.2	69
138	Biogeochemical controls on the product of microbial U(VI) reduction. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 12351-8	10.3	67
137	Sublethal and Reproductive Effects of Acute and Chronic Exposure to Flowback and Produced Water from Hydraulic Fracturing on the Water Flea Daphnia magna. <i>Environmental Science & Technology</i> , 2017 , 51, 3032-3039	10.3	65
136	Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. <i>Environment International</i> , 2020 , 140, 105754	12.9	60
135	Comparative analysis of hydraulic fracturing wastewater practices in unconventional shale development: Water sourcing, treatment and disposal practices. <i>Canadian Water Resources Journal</i> , 2017 , 42, 105-121	1.7	58
134	Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar. <i>Environmental Science & Environmental Science</i>	10.3	58
133	Cadmium adsorption to mixtures of soil components: Testing the component additivity approach. <i>Chemical Geology</i> , 2010 , 270, 186-195	4.2	58
132	Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications- A review. <i>Advances in Colloid and Interface Science</i> , 2019 , 265, 1-13	14.3	58
131	Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. <i>Chemosphere</i> , 2019 , 235, 825-831	8.4	54
130	Effects on Biotransformation, Oxidative Stress, and Endocrine Disruption in Rainbow Trout (Oncorhynchus mykiss) Exposed to Hydraulic Fracturing Flowback and Produced Water. <i>Environmental Science & Environmental Science & </i>	10.3	43
129	Organo-Illite as a Low Permeability Sorbent to Retard Migration of Anionic Contaminants. <i>Journal of Environmental Engineering, ASCE</i> , 2002 , 128, 583-587	2	43
128	Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. <i>Environmental Science & Environmental Science & Environment</i>	10.3	42
127	Mechanisms of the Removal of U(VI) from Aqueous Solution Using Biochar: A Combined Spectroscopic and Modeling Approach. <i>Environmental Science & Environmental Science & Envir</i>	,10.3	41
126	Modified sequential extraction for biochar and petroleum coke: Metal release potential and its environmental implications. <i>Bioresource Technology</i> , 2017 , 236, 106-110	11	39
125	Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. <i>Journal of Hazardous Materials</i> , 2019 , 369, 569-576	12.8	39

124	Cell surface reactivity of Synechococcus sp. PCC 7002: Implications for metal sorption from seawater. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 169, 30-44	5.5	39
123	Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing. <i>Science of the Total Environment</i> , 2018 , 643, 1571-1578	10.2	39
122	Application of an Integrated SWATMODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on GroundwaterBurface Water Interactions in West-Central Alberta. <i>Water (Switzerland)</i> , 2019 , 11, 110	3	39
121	Change of the point of zero net proton charge (pHPZNPC) of clay minerals with ionic strength. <i>Chemical Geology</i> , 2018 , 493, 458-467	4.2	36
120	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. <i>Chemosphere</i> , 2019 , 233, 149-156	8.4	34
119	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. <i>Environmental Research</i> , 2020 , 183, 109152	7.9	31
118	Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. <i>Environment International</i> , 2019 , 131, 104990	12.9	31
117	Influence of quaternary ammonium on sorption of selected metal cations onto clinoptilolite zeolite. <i>Journal of Environmental Quality</i> , 2002 , 31, 1106-14	3.4	31
116	Nanobiochar: production, properties, and multifunctional applications. <i>Environmental Science: Nano</i> , 2020 , 7, 3279-3302	7.1	29
115	Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. <i>Nature Geoscience</i> , 2019 , 12, 558-563	18.3	27
114	Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. <i>Chemical Geology</i> , 2018 , 483, 191-200	4.2	26
113	Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 14626-14635	5.1	26
112	Using CO as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region. <i>Environmental Science & Environmental Science & Environme</i>	10.3	25
111	Selection criteria for oxidation method in total organic carbon measurement. <i>Chemosphere</i> , 2018 , 199, 453-458	8.4	25
110	Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 290, 124-136	5.5	25
109	Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils. <i>Applied Geochemistry</i> , 2018 , 88, 103-112	3.5	24
108	Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: Relationships between lignin content and dissolved organic matter leaching. <i>Chemical Engineering Journal</i> , 2020 , 393, 124687	14.7	23
107	Nontarget profiling of organic compounds in a temporal series of hydraulic fracturing flowback and produced waters. <i>Environment International</i> , 2019 , 131, 104944	12.9	22

(2019-2019)

106	Characterization and implications of solids associated with hydraulic fracturing flowback and produced water from the Duvernay Formation, Alberta, Canada. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 242-255	4.3	21	
105	Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium. <i>Environmental Science & Environmental Science & Environment</i>	10.3	21	
104	Stabilization-based soil remediation should consider long-term challenges. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	21	•
103	Uncertainties in determining microbial biomass C using the chloroform fumigation extraction method. <i>Chemical Geology</i> , 2011 , 280, 58-64	4.2	21	
102	The impact of ionic strength on the proton reactivity of clay minerals. <i>Chemical Geology</i> , 2019 , 529, 119	2. 9.4	20	
101	Hydrometallurgical processes for heavy metals recovery from industrial sludges. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 1-41	11.1	19	
100	Comparative Analysis of Hydraulic Fracturing Wastewater Practices in Unconventional Shale Development: Newspaper Coverage of Stakeholder Concerns and Social License to Operate. <i>Sustainability</i> , 2016 , 8, 912	3.6	19	
99	Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition. <i>Geoderma</i> , 2019 , 340, 49-54	6.7	19	
98	Accuracy of methods for reporting inorganic element concentrations and radioactivity in oil and gas wastewaters from the Appalachian Basin, U.S. based on an inter-laboratory comparison. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 224-241	4.3	16	
97	Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 180, 600-609	7	16	
96	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. <i>Chemical Engineering Journal</i> , 2020 , 388, 124	2437	16	
95	Petrology and geochemistry of the Boolgeeda Iron Formation, Hamersley Basin, Western Australia. <i>Precambrian Research</i> , 2018 , 316, 155-173	3.9	16	
94	Biochar colloids and their use in contaminants removal. <i>Biochar</i> , 2019 , 1, 151-162	10	16	
93	Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. <i>Environmental Science & Environmental Science & Env</i>	10.3	16	
92	Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. <i>Bulletin of the Geological Society of America</i> , 2018 , 130, 941-951	3.9	16	
91	Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature. <i>Chemical Engineering Journal</i> , 2021 , 411, 128441	14.7	15	
90	Metal oxide sorbents for the sustainable recovery of lithium from unconventional resources. <i>Applied Materials Today</i> , 2020 , 19, 100638	6.6	15	
89	Temporal Changes in Microbial Community Composition and Geochemistry in Flowback and Produced Water from the Duvernay Formation. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1047-1057	3.2	14	

88	Removal of organic acids from water using biochar and petroleum coke. <i>Environmental Technology and Innovation</i> , 2016 , 6, 141-151	7	14
87	Experimental Measurement of Monovalent Cation Adsorption onto Bacillus subtilis Cells. <i>Geomicrobiology Journal</i> , 2010 , 27, 464-472	2.5	14
86	Clay minerals as a source of cadmium to estuaries. Scientific Reports, 2020, 10, 10417	4.9	14
85	Reusable magnetite nanoparticles-biochar composites for the efficient removal of chromate from water. <i>Scientific Reports</i> , 2020 , 10, 19007	4.9	14
84	Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1790-1808	4.3	14
83	Biochar composites: Emerging trends, field successes and sustainability implications. <i>Soil Use and Management</i> , 2022 ,	3.1	14
82	Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. <i>Chemical Engineering Journal</i> , 2021 , 425, 131489	14.7	14
81	Effect of Acidic Conditions on Surface Properties and Metal Binding Capacity of Clay Minerals. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2421-2429	3.2	13
80	In vitro assessment of endocrine disrupting potential of organic fractions extracted from hydraulic fracturing flowback and produced water (HF-FPW). <i>Environment International</i> , 2018 , 121, 824-831	12.9	13
79	Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127060	12.8	13
78	The osmotic effect of hyper-saline hydraulic fracturing fluid on rainbow trout, Oncorhynchus mykiss. <i>Aquatic Toxicology</i> , 2019 , 211, 1-10	5.1	12
77	Simultaneous reduction and immobilization of Cr(VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing. <i>Journal of Hazardous Materials</i> , 2021 , 415, 125650	12.8	12
76	Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126266	12.8	12
75	Nutrient recovery from source-diverted blackwater: Optimization for enhanced phosphorus recovery and reduced co-precipitation. <i>Journal of Cleaner Production</i> , 2019 , 235, 417-425	10.3	11
74	Understanding the effects of hydraulic fracturing flowback and produced water (FPW) to the aquatic invertebrate, Lumbriculus variegatus under various exposure regimes. <i>Environmental Pollution</i> , 2020 , 259, 113889	9.3	11
73	Adsorption characteristics of cesium onto calcium-silicate-hydrate in concrete powder and block. <i>Chemosphere</i> , 2020 , 259, 127494	8.4	11
72	Surface reactivity of the anaerobic phototrophic Fe(II)-oxidizing bacterium Rhodovulum iodosum: Implications for trace metal budgets in ancient oceans and banded iron formations. <i>Chemical Geology</i> , 2016 , 442, 113-120	4.2	10
71	Cell surface characterization and trace metal adsorptive properties of anaerobic ammonium-oxidizing (anammox) consortia. <i>Chemosphere</i> , 2019 , 221, 11-20	8.4	10

70	Nanomaterials for sustainable remediation of chemical contaminants in water and soil. <i>Critical Reviews in Environmental Science and Technology</i> ,1-50	11.1	10
69	Measurements of bacterial mat metal binding capacity in alkaline and carbonate-rich systems. <i>Chemical Geology</i> , 2017 , 451, 17-24	4.2	9
68	Hydro-climate and biogeochemical processes control watershed organic carbon inflows: Development of an in-stream organic carbon module coupled with a process-based hydrologic model. <i>Science of the Total Environment</i> , 2020 , 718, 137281	10.2	9
67	Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. <i>Environmental Geochemistry and Health</i> , 2019 , 41, 149-157	4.7	9
66	Beam-induced oxidation of monomeric U(IV) Beecies. <i>Journal of Synchrotron Radiation</i> , 2013 , 20, 197-9	2.4	9
65	Projecting impacts of wildfire and climate change on streamflow, sediment, and organic carbon yields in a forested watershed. <i>Journal of Hydrology</i> , 2020 , 590, 125403	6	9
64	Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 187, 179-194	5.5	9
63	Mineralogic controls on aqueous neptunium(V) concentrations in silicate systems. <i>Journal of Nuclear Materials</i> , 2013 , 433, 233-239	3.3	8
62	Comparative analysis of hydraulic fracturing wastewater practices in unconventional shale developments: Regulatory regimes. <i>Canadian Water Resources Journal</i> , 2017 , 42, 122-137	1.7	8
61	Exposure to Hydraulic Fracturing Flowback Water Impairs () Cardiomyocyte Contractile Function and Swimming Performance. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
60	Assessment of impacts of diphenyl phosphate on groundwater and near-surface environments: Sorption and toxicity. <i>Journal of Contaminant Hydrology</i> , 2019 , 221, 50-57	3.9	8
59	Potential of asphalt concrete as a source of trace metals. <i>Environmental Geochemistry and Health</i> , 2020 , 42, 397-405	4.7	8
58	Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(VI) removal by engineered biochar. <i>Chemical Engineering Journal</i> , 2022 , 428, 131967	14.7	8
57	Heavy metal dissolution mechanisms from electrical industrial sludge. <i>Science of the Total Environment</i> , 2019 , 696, 133922	10.2	7
56	Competitive adsorption of heavy metals by anaerobic ammonium-oxidizing (anammox) consortia. <i>Chemosphere</i> , 2020 , 258, 127289	8.4	7
55	Biogeochemistry of U, Ni, and As in two meromictic pit lakes at the Cluff Lake uranium mine, northern Saskatchewan. <i>Canadian Journal of Earth Sciences</i> , 2018 , 55, 463-474	1.5	7
54	A comparison of bulk versus laser ablation trace element analyses in banded iron formations: Insights into the mechanisms leading to compositional variability. <i>Chemical Geology</i> , 2019 , 506, 197-224	4.2	7
53	Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 163, 112515	16.2	7

52	Response of aquatic microbial communities and bioindicator modelling of hydraulic fracturing flowback and produced water. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	6
51	Biochar-induced changes in metal mobility and uptake by perennial plants in a ferralsol of Brazilā Atlantic forest. <i>Biochar</i> , 2019 , 1, 309-324	10	5
50	Application of Synchrotron X-ray Absorption Spectroscopy and Microscopy Techniques to the Study of Biogeochemical Processes 2019 , 238-261		5
49	Reduction of 2,4,6-Trinitrotoluene and Hexahydro-1,3,5-trinitro-1,3,5-triazine by Hydroxyl-Complexed Fe(II). <i>Journal of Environmental Engineering, ASCE</i> , 2008 , 134, 937-943	2	5
48	Particulate emissions from turbulent diffusion flames with entrained droplets: A laboratory simulation of gas flaring emissions. <i>Journal of Aerosol Science</i> , 2021 , 157, 105807	4.3	5
47	Field- and Lab-Based Potentiometric Titrations of Microbial Mats from the Fairmont Hot Spring, Canada. <i>Geomicrobiology Journal</i> , 2017 , 34, 851-863	2.5	4
46	Adsorption of biologically critical trace elements to the marine cyanobacterium Synechococcus sp. PCC 7002: Implications for marine trace metal cycling. <i>Chemical Geology</i> , 2019 , 525, 28-36	4.2	4
45	Colloidal transport mechanisms and sequestration of U, Ni, and As in meromictic mine pit lakes. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 265, 292-312	5.5	4
44	Effect of temperature on phenanthrene accumulation from hydraulic fracturing flowback and produced water in rainbow trout (Oncorhynchus mykiss). <i>Environmental Pollution</i> , 2021 , 272, 116411	9.3	4
43	The kaolinite shuttle links the Great Oxidation and Lomagundi events. <i>Nature Communications</i> , 2021 , 12, 2944	17.4	4
42	Diopatra cuprea worm burrow parchment: a cautionary tale of infaunal surface reactivity. <i>Lethaia</i> , 2020 , 53, 47-61	1.3	4
41	Changes to hepatic nutrient dynamics and energetics in rainbow trout (Oncorhynchus mykiss) following exposure to and recovery from hydraulic fracturing flowback and produced water. <i>Science of the Total Environment</i> , 2021 , 764, 142893	10.2	4
40	Characterizing Returning Polymers in Hydraulic-Fracturing Flowback and Produced Water: Implications for Colloid Formation (includes associated erratum). <i>SPE Journal</i> , 2021 , 26, 563-590	3.1	4
39	Inhibition of naphthalene leaching from municipal carbonaceous waste by a magnetic organophilic clay. <i>Journal of Hazardous Materials</i> , 2019 , 368, 578-583	12.8	3
38	Potentiometric Titrations to Characterize the Reactivity of Geomicrobial Surfaces 2019 , 79-92		3
37	HYDROSCAPE: A new versatile software program for evaluating contaminant transport in groundwater. <i>SoftwareX</i> , 2017 , 6, 261-266	2.7	3
36	Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method <i>Science of the Total Environment</i> , 2022 , 152922	10.2	3
35	Hydraulic Fracturing Return Fluids from Offshore Hydrocarbon Extraction Present New Risks to Marine Ecosystems. <i>Environmental Science & Ecosystems</i> (2021, 55, 4199-4201)	10.3	3

(2021-2021)

34	Spectroscopic and Modeling Investigation of Sorption of Pb(II) to ZSM-5 Zeolites. <i>ACS ES&T Water</i> , 2021 , 1, 108-116		3
33	A complex bioaccumulation story in flowback and produced water from hydraulic fracturing: The role of organic compounds in inorganic accumulation in Lumbriculus variegatus. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125525	12.8	3
32	Lithium recovery from hydraulic fracturing flowback and produced water using a selective ion exchange sorbent. <i>Chemical Engineering Journal</i> , 2021 , 426, 130713	14.7	3
31	Production of a carbonaceous sorbent from the CO2 pyrolysis of hydraulic fracturing flowback and produced water solids. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103862	6.8	2
30	Response to Comment on "Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach". <i>Environmental Science & amp; Technology</i> , 2016 , 50, 1634-5	10.3	2
29	Applications of Fourier-transform Infrared Spectroscopy in Geomicrobiology 2019 , 288-313		2
28	Biogeochemical Behavior of Metals Along Two Permeable Reactive Barriers in a Mining-Affected Wetland. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 3536-3554	3.7	2
27	Hydraulic properties of the Paskapoo Formation in west-central Alberta. <i>Canadian Journal of Earth Sciences</i> , 2017 , 54, 883-892	1.5	2
26	Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes. <i>Journal of Hydrology</i> , 2022 , 606, 127449	6	2
25	Effect of fulvic acid co-precipitation on biosynthesis of Fe(III) hydroxysulfate and its adsorption of lead <i>Environmental Pollution</i> , 2021 , 295, 118669	9.3	2
24	In Situ Biostimulation of Cr(VI) Reduction in a Fast-Flowing Oxic Aquifer. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 2018-2030	3.2	2
23	XAS characterization of nano-chromite particles precipitated on magnetite-biochar composites. <i>Radiation Physics and Chemistry</i> , 2020 , 175, 108544	2.5	2
22	Modeling the Surface Chemistry of Biochars 2019 , 59-72		2
21	Arsenic bioaccumulation and biotransformation in aquatic organisms <i>Environment International</i> , 2022 , 163, 107221	12.9	2
20	Cost analysis of wastewater production from conventional and unconventional oil and gas wells. <i>Fuel</i> , 2022 , 323, 124222	7.1	2
19	Electron donor-driven bacterial and archaeal community patterns along forest ring edges in Ontario, Canada. <i>Environmental Microbiology Reports</i> , 2018 , 10, 663-672	3.7	1
18	Cadmium bioaccumulates after acute exposure but has no effect on locomotion or shelter-seeking behaviour in the invasive green shore crab () 2017 , 5, cox057		1
17	A common well pad does not imply common toxicity: Assessing the acute and chronic toxicity of flowback and produced waters from four Montney Formation wells on the same well pad to the freshwater invertebrate Daphnia magna. <i>Science of the Total Environment</i> , 2021 , 807, 150986	10.2	1

16	Group versus individual exposure: Do methodological decisions in aquatic toxicology alter experimental results?. <i>Science of the Total Environment</i> , 2021 , 764, 144288	10.2	1
15	Trace Elemental Partitioning on Clays Derived From Hydrothermal Muds of the El Tatio Geyser Field, Chile. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2020JB021422	3.6	1
14	Surface reactivity of the cyanobacterium Synechocystis sp. PCC 6803 Implications for trace metals transport to the oceans. <i>Chemical Geology</i> , 2021 , 562, 120045	4.2	1
13	Suspended solids-associated toxicity of hydraulic fracturing flowback and produced water on early life stages of zebrafish (Danio rerio). <i>Environmental Pollution</i> , 2021 , 287, 117614	9.3	1
12	Lead (Pb) sorption to hydrophobic and hydrophilic zeolites in the presence and absence of MTBE. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126528	12.8	1
11	Effects of salinity on the leaching of ionic species from hydrocarbon target formations during hydraulic fracturing. <i>Chemical Geology</i> , 2022 , 120718	4.2	O
10	Epoxidized linseed lipids as a durable and fast-curing alternative to drying oils. <i>Progress in Organic Coatings</i> , 2021 , 159, 106406	4.8	0
9	Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event. <i>Earth and Planetary Science Letters</i> , 2022 , 584, 117503	5.3	О
8	Pyrolyzed biomass-derived nanoparticles: a review of surface chemistry, contaminant mobility, and future research avenues to fill the gaps. <i>Biochar</i> , 2022 , 4,	10	0
7	Reply to Desmond F. Lascelles Lomment on Tyler Warchola, Stefan V. Lalonde, Ernesto Pecoits, Konstantin von Gunten, Leslie J. Robbins, Daniel S. Alessi, Pascal Philippot, Kurt O. Konhauser. Petrology and geochemistry of the Boolgeeda iron formation, Hamersley Basin, Western Australia.	3.9	
6	The Application of Isothermal Titration Calorimetry for Investigating Proton and Metal Interactions on Microbial Surfaces 2019 , 63-78		
5	Acid-base properties of Synechococcus-derived organic matter. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 315, 89-100	5.5	
4	Geochemical controls on U immobilization in the subsurface 2015 , 477-486		
3	The influence of invertebrate faecal material on compositional heterogeneity, diagenesis and trace metal distribution in the Ogeechee River estuary, Georgia, USA. <i>Sedimentology</i> , 2021 , 68, 788-804	3.3	
2	Unlocking the potential of hydraulic fracturing flowback and produced water for CO2 removal via mineral carbonation. <i>Applied Geochemistry</i> , 2022 , 105345	3.5	
1	Biochar nanoparticles: interactions with and impacts on soil and water microorganisms 2022 , 139-154		