Jiake Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6396104/publications.pdf

Version: 2024-02-01

153	7,719	41 h-index	79
papers	citations		g-index
155	155	155	9132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Research, 2018, 6, 15.	5.4	947
2	Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nature Communications, 2016, 7, 10872.	5.8	424
3	An overview of the regulation of bone remodelling at the cellular level. Clinical Biochemistry, 2012, 45, 863-873.	0.8	408
4	Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research, 2016, 4, 15040.	5.4	355
5	Gene Expression of Osteoprotegerin Ligand, Osteoprotegerin, and Receptor Activator of NF-κB in Giant Cell Tumor of Bone. American Journal of Pathology, 2000, 156, 761-767.	1.9	260
6	Angiogenic factors in bone local environment. Cytokine and Growth Factor Reviews, 2013, 24, 297-310.	3.2	208
7	NF-κB modulators in osteolytic bone diseases. Cytokine and Growth Factor Reviews, 2009, 20, 7-17.	3.2	205
8	Pseurotin A Inhibits Osteoclastogenesis and Prevents Ovariectomized-Induced Bone Loss by Suppressing Reactive Oxygen Species. Theranostics, 2019, 9, 1634-1650.	4.6	165
9	Cloning, Sequencing, and Functional Characterization of the Rat Homologue of Receptor Activator of NF-κB Ligand. Journal of Bone and Mineral Research, 2000, 15, 2178-2186.	3.1	152
10	microRNA-103a Functions as a Mechanosensitive microRNA to Inhibit Bone Formation Through Targeting Runx2. Journal of Bone and Mineral Research, 2015, 30, 330-345.	3.1	142
11	Loureirin B suppresses RANKL-induced osteoclastogenesis and ovariectomized osteoporosis via attenuating NFATc1 and ROS activities. Theranostics, 2019, 9, 4648-4662.	4.6	141
12	12-O-tetradecanoylphorbol-13-acetate (TPA) Inhibits Osteoclastogenesis by Suppressing RANKL-Induced NF-κB Activation. Journal of Bone and Mineral Research, 2003, 18, 2159-2168.	3.1	132
13	Therapeutic Potential and Outlook of Alternative Medicine for Osteoporosis. Current Drug Targets, 2017, 18, 1051-1068.	1.0	101
14	EGFL6 Promotes Endothelial Cell Migration and Angiogenesis through the Activation of Extracellular Signal-regulated Kinase. Journal of Biological Chemistry, 2011, 286, 22035-22046.	1.6	95
15	Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS Letters, 2011, 585, 2755-2762.	1.3	89
16	Lightâ€Triggered Biomimetic Nanoerythrocyte for Tumorâ€Targeted Lung Metastatic Combination Therapy of Malignant Melanoma. Small, 2018, 14, e1801754.	5.2	89
17	Dihydroartemisinin, an Anti-Malaria Drug, Suppresses Estrogen Deficiency-Induced Osteoporosis, Osteoclast Formation, and RANKL-Induced Signaling Pathways. Journal of Bone and Mineral Research, 2016, 31, 964-974.	3.1	88
18	Myocyte Enhancer Factor 2 and Microphthalmia-associated Transcription Factor Cooperate with NFATc1 to Transactivate the V-ATPase d2 Promoter during RANKL-induced Osteoclastogenesis. Journal of Biological Chemistry, 2009, 284, 14667-14676.	1.6	87

#	Article	IF	CITATIONS
19	Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Frontiers in Pharmacology, 2019, 10, 1344.	1.6	87
20	The emerging roles of hnRNPK. Journal of Cellular Physiology, 2020, 235, 1995-2008.	2.0	85
21	STAT3 and its targeting inhibitors in osteosarcoma. Cell Proliferation, 2021, 54, e12974.	2.4	82
22	Sesquiterpene Lactone Parthenolide Blocks Lipopolysaccharide-Induced Osteolysis Through the Suppression of NF-κB Activity. Journal of Bone and Mineral Research, 2004, 19, 1905-1916.	3.1	81
23	Thapsigargin Modulates Osteoclastogenesis Through the Regulation of RANKL-Induced Signaling Pathways and Reactive Oxygen Species Production. Journal of Bone and Mineral Research, 2005, 20, 1462-1471.	3.1	77
24	Coupling factors and exosomal packaging micro <scp>RNA</scp> s involved in the regulation of bone remodelling. Biological Reviews, 2018, 93, 469-480.	4.7	76
25	The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. BioMed Research International, 2019, 2019, 1-8.	0.9	75
26	p62 Ubiquitin Binding-Associated Domain Mediated the Receptor Activator of Nuclear Factor-ÎB Ligand-Induced Osteoclast Formation. American Journal of Pathology, 2006, 169, 503-514.	1.9	70
27	Mangiferin attenuates osteoclastogenesis, bone resorption, and RANKLâ€induced activation of NFâ€PB and ERK. Journal of Cellular Biochemistry, 2011, 112, 89-97.	1.2	69
28	Emerging Trend in the Pharmacotherapy of Osteoarthritis. Frontiers in Endocrinology, 2019, 10, 431.	1.5	68
29	Calcium/calmodulin-dependent kinase activity is required for efficient induction of osteoclast differentiation and bone resorption by receptor activator of nuclear factor kappa B ligand (RANKL). Journal of Cellular Physiology, 2007, 212, 787-795.	2.0	65
30	Donkey genomes provide new insights into domestication and selection for coat color. Nature Communications, 2020, 11, 6014.	5.8	63
31	Proteasome inhibitors impair RANKLâ€induced NFâ€iºB activity in osteoclastâ€like cells via disruption of p62, TRAF6, CYLD, and lîºBî± signaling cascades. Journal of Cellular Physiology, 2009, 220, 450-459.	2.0	61
32	HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochemical Journal, 2013, 451, 235-244.	1.7	60
33	Steroid-induced osteonecrosis of the femoral head reveals enhanced reactive oxygen species and hyperactive osteoclasts. International Journal of Biological Sciences, 2020, 16, 1888-1900.	2.6	58
34	Mechanical Stress Regulates Bone Metabolism Through MicroRNAs. Journal of Cellular Physiology, 2017, 232, 1239-1245.	2.0	57
35	The emerging role of Hippo signaling pathway in regulating osteoclast formation. Journal of Cellular Physiology, 2018, 233, 4606-4617.	2.0	56
36	Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Theranostics, 2020, 10, 5957-5965.	4.6	55

#	Article	IF	CITATIONS
37	Single-Cell Transcriptomics Reveals the Complexity of the Tumor Microenvironment of Treatment-Naive Osteosarcoma. Frontiers in Oncology, 2021, 11, 709210.	1.3	54
38	Massage Alleviates Delayed Onset Muscle Soreness after Strenuous Exercise: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 2017, 8, 747.	1.3	53
39	MiRâ€214 is an important regulator of the musculoskeletal metabolism and disease. Journal of Cellular Physiology, 2019, 234, 231-245.	2.0	49
40	Cyanidin Chloride inhibits ovariectomyâ€induced osteoporosis by suppressing RANKLâ€mediated osteoclastogenesis and associated signaling pathways. Journal of Cellular Physiology, 2018, 233, 2502-2512.	2.0	48
41	EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. Journal of Cellular Physiology, 2018, 233, 8526-8537.	2.0	46
42	Artesunate inhibits RANKL-induced osteoclastogenesis and bone resorption in vitro and prevents LPS-induced bone loss in vivo. Journal of Cellular Physiology, 2018, 233, 476-485.	2.0	44
43	m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 783322.	1.8	43
44	SC-514, a selective inhibitor of IKK \hat{l}^2 attenuates RANKL-induced osteoclastogenesis and NF- \hat{l}^0 B activation. Biochemical Pharmacology, 2013, 86, 1775-1783.	2.0	42
45	Oroxylin A reduces osteoclast formation and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Biochemical Pharmacology, 2021, 193, 114761.	2.0	42
46	EGFL7 Is Expressed in Bone Microenvironment and Promotes Angiogenesis via ERK, STAT3, and Integrin Signaling Cascades. Journal of Cellular Physiology, 2015, 230, 82-94.	2.0	40
47	Salidroside promotes rat spinal cord injury recovery by inhibiting inflammatory cytokine expression and NFâ€PB and MAPK signaling pathways. Journal of Cellular Physiology, 2019, 234, 14259-14269.	2.0	39
48	Current research progress in targeted antiâ€angiogenesis therapy for osteosarcoma. Cell Proliferation, 2021, 54, e13102.	2.4	39
49	Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblastâ€like synoviocytes, and collagenâ€induced arthritis rats. Journal of Cellular Physiology, 2018, 233, 6291-6303.	2.0	38
50	Osteoimmunological insights into the pathogenesis of ankylosing spondylitis. Journal of Cellular Physiology, 2021, 236, 6090-6100.	2.0	38
51	Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-Ò>B activation and titanium particle-induced osteolysis in a mouse model. Molecular and Cellular Endocrinology, 2015, 399, 346-353.	1.6	37
52	Cytoplasmic hnRNPK interacts with GSK3 \hat{l}^2 and is essential for the osteoclast differentiation. Scientific Reports, 2016, 5, 17732.	1.6	35
53	The Emerging Role of MORC Family Proteins in Cancer Development and Bone Homeostasis. Journal of Cellular Physiology, 2017, 232, 928-934.	2.0	35
54	Luteoloside prevents lipopolysaccharideâ€induced osteolysis and suppresses RANKLâ€induced osteoclastogenesis through attenuating RANKL signaling cascades. Journal of Cellular Physiology, 2018, 233, 1723-1735.	2.0	35

#	Article	IF	CITATIONS
55	Madecassoside inhibits estrogen deficiencyâ€induced osteoporosis by suppressing <scp>RANKL</scp> â€induced osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2019, 23, 380-394.	1.6	34
56	Hymenialdisine: A Marine Natural Product That Acts on Both Osteoblasts and Osteoclasts and Prevents Estrogenâ€Dependent Bone Loss in Mice. Journal of Bone and Mineral Research, 2020, 35, 1582-1596.	3.1	34
57	<i>Cistanche deserticola</i> polysaccharide attenuates osteoclastogenesis and bone resorption via inhibiting RANKL signaling and reactive oxygen species production. Journal of Cellular Physiology, 2018, 233, 9674-9684.	2.0	32
58	AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death and Disease, 2021, 12, 274.	2.7	32
59	Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Pharmacological Research, 2020, 159, 104944.	3.1	32
60	TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways. Oncotarget, 2018, 9, 4833-4850.	0.8	31
61	HtrA1 is upregulated during RANKLâ€induced osteoclastogenesis, and negatively regulates osteoblast differentiation and BMP2â€induced Smad1/5/8, ERK and p38 phosphorylation. FEBS Letters, 2014, 588, 143-150.	1.3	30
62	Molecular structure and function of microfibrillarâ€associated proteins in skeletal and metabolic disordersÂand cancers. Journal of Cellular Physiology, 2021, 236, 41-48.	2.0	30
63	Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways. International Journal of Molecular Sciences, 2015, 16, 27087-27096.	1.8	29
64	Deficiency of sorting nexin 10 prevents bone erosion in collagen-induced mouse arthritis through promoting NFATc1 degradation. Annals of the Rheumatic Diseases, 2016, 75, 1211-1218.	0.5	29
65	Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Research, 2022, 10, 30.	5.4	29
66	Membrane-bound receptor activator of NFκB ligand (RANKL) activity displayed by osteoblasts is differentially regulated by osteolytic factors. Biochemical and Biophysical Research Communications, 2012, 422, 48-53.	1.0	28
67	Eriodictyol Inhibits RANKLâ€Induced Osteoclast Formation and Function Via Inhibition of NFATc1 Activity. Journal of Cellular Physiology, 2016, 231, 1983-1993.	2.0	28
68	<i>Asiaticoside</i> , a component of <i>Centella asiatica</i> attenuates RANKLâ€induced osteoclastogenesis via NFATc1 and NFâ€ <i>κ</i> B signaling pathways. Journal of Cellular Physiology, 2019, 234, 4267-4276.	2.0	28
69	Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma. Genes, 2021, 12, 1132.	1.0	26
70	Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT. International Journal of Molecular Sciences, 2017, 18, 203.	1.8	25
71	Achyranthes bidentata polysaccharide suppresses osteoclastogenesis and bone resorption via inhibiting RANKL signaling. Journal of Cellular Biochemistry, 2018, 119, 4826-4835.	1.2	25
72	Daphnetin attenuates LPSâ€induced osteolysis and RANKL mediated osteoclastogenesis through suppression of ERK and NFATc1 pathways. Journal of Cellular Physiology, 2019, 234, 17812-17823.	2.0	25

#	Article	IF	Citations
73	Choline Kinase \hat{I}^2 Mutant Mice Exhibit Reduced Phosphocholine, Elevated Osteoclast Activity, and Low Bone Mass. Journal of Biological Chemistry, 2015, 290, 1729-1742.	1.6	24
74	Nitidine chloride prevents OVX-induced bone loss via suppressing NFATc1-mediated osteoclast differentiation. Scientific Reports, 2016, 6, 36662.	1.6	24
75	NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase. Scientific Reports, 2016, 6, 36210.	1.6	24
76	Evodiamine inhibits <scp>RANKL</scp> â€induced osteoclastogenesis and prevents ovariectomyâ€induced bone loss in mice. Journal of Cellular and Molecular Medicine, 2019, 23, 522-534.	1.6	24
77	Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3. Archives of Biochemistry and Biophysics, 2018, 647, 76-83.	1.4	23
78	Rhoifolin ameliorates titanium particleâ€stimulated osteolysis and attenuates osteoclastogenesis via RANKLâ€induced NFâ€iºB and MAPK pathways. Journal of Cellular Physiology, 2019, 234, 17600-17611.	2.0	23
79	Inhibitory effects of biochanin A on titanium particleâ€induced osteoclast activation and inflammatory bone resorption via NFâ€ÎºB and MAPK pathways. Journal of Cellular Physiology, 2021, 236, 1432-1444.	2.0	23
80	Loss of Protein Kinase $C-\hat{l}'$ Protects against LPS-Induced Osteolysis Owing to an Intrinsic Defect in Osteoclastic Bone Resorption. PLoS ONE, 2013, 8, e70815.	1.1	23
81	Protein Kinase C Inhibitor, GF109203X Attenuates Osteoclastogenesis, Bone Resorption and RANKLâ€Induced NFâ€PB and NFAT Activity. Journal of Cellular Physiology, 2015, 230, 1235-1242.	2.0	22
82	Treadmill running exercise prevents senile osteoporosis and upregulates the Wnt signaling pathway in SAMP6 mice. Oncotarget, 2016, 7, 71072-71086.	0.8	22
83	Synthesis of Janus Au nanorods/polydivinylbenzene hybrid nanoparticles for chemo-photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 2481-2488.	2.9	22
84	Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cellular and Molecular Life Sciences, 2019, 76, 3515-3523.	2.4	22
85	The repair and autophagy mechanisms of hypoxia-regulated bFGF-modified primary embryonic neural stem cells in spinal cord injury. Stem Cells Translational Medicine, 2020, 9, 603-619.	1.6	22
86	Osthole inhibits osteoclasts formation and bone resorption by regulating NFâ€PB signaling and NFATc1 activations stimulated by RANKL. Journal of Cellular Biochemistry, 2019, 120, 16052-16061.	1.2	21
87	Vindoline Inhibits RANKL-Induced Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss in Mice. Frontiers in Pharmacology, 2019, 10, 1587.	1.6	21
88	Chondromodulin-1 in health, osteoarthritis, cancer, and heart disease. Cellular and Molecular Life Sciences, 2019, 76, 4493-4502.	2.4	20
89	The role of glial cell lineâ€derived neurotrophic factor family member artemin in neurological disorders and cancers. Cell Proliferation, 2020, 53, e12860.	2.4	20
90	The emerging role of NPNT in tissue injury repair and bone homeostasis. Journal of Cellular Physiology, 2018, 233, 1887-1894.	2.0	19

#	Article	IF	Citations
91	Ellagic acid protects ovariectomyâ€induced bone loss in mice by inhibiting osteoclast differentiation and bone resorption. Journal of Cellular Physiology, 2020, 235, 5951-5961.	2.0	19
92	12 Survival-related differentially expressed genes based on the TARGET-osteosarcoma database. Experimental Biology and Medicine, 2021, 246, 2072-2081.	1.1	19
93	Molecular structure, expression, and functional role of Clec11a in skeletal biology and cancers. Journal of Cellular Physiology, 2020, 235, 6357-6365.	2.0	19
94	Mutations within the TNF-Like Core Domain of RANKL Impair Osteoclast Differentiation and Activation. Molecular Endocrinology, 2009, 23, 35-46.	3.7	18
95	MiR-214 Attenuates the Osteogenic Effects of Mechanical Loading on Osteoblasts. International Journal of Sports Medicine, 2019, 40, 931-940.	0.8	18
96	Diosmetin inhibits osteoclast formation and differentiation and prevents LPSâ€induced osteolysis in mice. Journal of Cellular Physiology, 2019, 234, 12701-12713.	2.0	18
97	Notopterol Attenuates Estrogen Deficiency-Induced Osteoporosis via Repressing RANKL Signaling and Reactive Oxygen Species. Frontiers in Pharmacology, 2021, 12, 664836.	1.6	18
98	Helvolic acid attenuates osteoclast formation and function via suppressing RANKLâ€induced NFATc1 activation. Journal of Cellular Physiology, 2019, 234, 6477-6488.	2.0	17
99	Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways. International Journal of Molecular Sciences, 2015, 16, 27470-27481.	1.8	16
100	MAGED1 Is a Negative Regulator of Bone Remodeling in Mice. American Journal of Pathology, 2015, 185, 2653-2667.	1.9	16
101	Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKLâ€induced osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2019, 23, 8355-8368.	1.6	16
102	The Hippo in the room: Targeting the Hippo signalling pathway for osteosarcoma therapies. Journal of Cellular Physiology, 2021, 236, 1606-1615.	2.0	16
103	New physiological insights into the phenomena of deer antler: A unique model for skeletal tissue regeneration. Journal of Orthopaedic Translation, 2021, 27, 57-66.	1.9	16
104	Vaccarin prevents titanium particleâ€induced osteolysis and inhibits RANKLâ€induced osteoclastogenesis by blocking NFâ€iºB and MAPK signaling pathways. Journal of Cellular Physiology, 2019, 234, 13832-13842.	2.0	15
105	Maackiain dampens osteoclastogenesis via attenuating RANKLâ€stimulated NFâ€PB signalling pathway and NFATc1 activity. Journal of Cellular and Molecular Medicine, 2020, 24, 12308-12317.	1.6	15
106	Dracorhodin perchlorate inhibits osteoclastogenesis through repressing RANKLâ€stimulated NFATc1 activity. Journal of Cellular and Molecular Medicine, 2020, 24, 3303-3313.	1.6	15
107	Carnosol suppresses RANKLâ€induced osteoclastogenesis and attenuates titanium particlesâ€induced osteolysis. Journal of Cellular Physiology, 2021, 236, 1950-1966.	2.0	15
108	A missense mutation sheds light on a novel structure–function relationship of RANKL. Journal of Cellular Physiology, 2021, 236, 2800-2816.	2.0	15

#	Article	IF	CITATIONS
109	Inhibitory Effects of Rhaponticin on Osteoclast Formation and Resorption by Targeting RANKL-Induced NFATc1 and ROS Activity. Frontiers in Pharmacology, 2021, 12, 645140.	1.6	15
110	Connecting Versatile IncRNAs with Heterogeneous Nuclear Ribonucleoprotein K and Pathogenic Disorders. Trends in Biochemical Sciences, 2019, 44, 733-736.	3.7	14
111	Cajaninstilbene acid inhibits osteoporosis through suppressing osteoclast formation and RANKLâ€induced signaling pathways. Journal of Cellular Physiology, 2019, 234, 11792-11804.	2.0	14
112	Molecular structure and the role of highâ€temperature requirement protein 1 in skeletal disorders and cancers. Cell Proliferation, 2020, 53, e12746.	2.4	14
113	Single-cell RNA sequencing reveals differential expression of EGFL7 and VEGF in giant-cell tumor of bone and osteosarcoma. Experimental Biology and Medicine, 2022, 247, 1214-1227.	1.1	14
114	Protein kinase C delta null mice exhibit structural alterations in articular surface, intra-articular and subchondral compartments. Arthritis Research and Therapy, 2015, 17, 210.	1.6	13
115	Natural Germacrane Sesquiterpenes Inhibit Osteoclast Formation, Bone Resorption, RANKL-Induced NF-κB Activation, and IκBα Degradation. International Journal of Molecular Sciences, 2015, 16, 26599-26607.	1.8	13
116	Asperpyrone A attenuates RANKLâ€induced osteoclast formation through inhibiting NFATc1, Ca ²⁺ signalling and oxidative stress. Journal of Cellular and Molecular Medicine, 2019, 23, 8269-8279.	1.6	13
117	Betulinic Acid Protects From Bone Loss in Ovariectomized Mice and Suppresses RANKL-Associated Osteoclastogenesis by Inhibiting the MAPK and NFATc1 Pathways. Frontiers in Pharmacology, 2020, 11, 1025.	1.6	13
118	Dehydrocostus lactone (DHC) suppresses estrogen deficiency-induced osteoporosis. Biochemical Pharmacology, 2019, 163, 279-289.	2.0	12
119	Pectolinarigenin prevents bone loss in ovariectomized mice and inhibits RANKLâ€induced osteoclastogenesis via blocking activation of MAPK and NFATc1 signaling. Journal of Cellular Physiology, 2019, 234, 13959-13968.	2.0	12
120	Cycloastragenol Attenuates Osteoclastogenesis and Bone Loss by Targeting RANKL-Induced Nrf2/Keap1/ARE, NF-κB, Calcium, and NFATc1 Pathways. Frontiers in Pharmacology, 2021, 12, 810322.	1.6	12
121	The Molecular Structure and Role of Humanin in Neural and Skeletal Diseases, and in Tissue Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 823354.	1.8	12
122	Modulating calcium-mediated NFATc1 and mitogen-activated protein kinase deactivation underlies the inhibitory effects of kavain on osteoclastogenesis and bone resorption. Journal of Cellular Physiology, 2019, 234, 789-801.	2.0	11
123	Cumambrin A prevents OVXâ€induced osteoporosis <i>via</i> the inhibition of osteoclastogenesis, bone resorption, and RANKL signaling pathways. FASEB Journal, 2019, 33, 6726-6735.	0.2	11
124	Cytochalasin Z11 inhibits RANKL-induced osteoclastogenesis <i>via</i> suppressing NFATc1 activation. RSC Advances, 2019, 9, 38438-38446.	1.7	10
125	Cepharanthine suppresses osteoclast formation by modulating the nuclear factorâ€PB and nuclear factor of activated Tâ€eell signaling pathways. Journal of Cellular Biochemistry, 2019, 120, 1990-1996.	1.2	10
126	Alternative splicing of leptin receptor overlapping transcript in osteosarcoma. Experimental Biology and Medicine, 2020, 245, 1437-1443.	1.1	10

#	Article	IF	Citations
127	Cytoplasmic PCNA is located in the actin belt and involved in osteoclast differentiation. Aging, 2020, 12, 13297-13317.	1.4	10
128	Natural Compounds for the Treatment of Psoriatic Arthritis: A Proposal Based on Multi-Targeted Osteoclastic Regulation and on a Preclinical Study. JMIR Research Protocols, 2017, 6, e132.	0.5	10
129	Chrysin Protects Against Titanium Particle-Induced Osteolysis by Attenuating Osteoclast Formation and Function by Inhibiting NF-Î [®] B and MAPK Signaling. Frontiers in Pharmacology, 2022, 13, 793087.	1.6	10
130	Monocrotaline Suppresses RANKL-Induced Osteoclastogenesis In Vitro and Prevents LPS-Induced Bone Loss In Vivo. Cellular Physiology and Biochemistry, 2018, 48, 644-656.	1.1	9
131	Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKLâ€induced NFAT activation and calcium signaling. Journal of Cellular Physiology, 2018, 233, 8971-8983.	2.0	9
132	The molecular structure and role of LECT2 or CHMâ€II in arthritis, cancer, and other diseases. Journal of Cellular Physiology, 2022, 237, 480-488.	2.0	9
133	MicroRNAs as Potential Targets for Treatment of Osteoclast-Related Diseases. Current Drug Targets, 2018, 19, 422-431.	1.0	9
134	Fumitremorgin C Attenuates Osteoclast Formation and Function via Suppressing RANKL-Induced Signaling Pathways. Frontiers in Pharmacology, 2020, 11, 238.	1.6	8
135	Roburic acid attenuates osteoclastogenesis and bone resorption by targeting RANKLâ€induced intracellular signaling pathways. Journal of Cellular Physiology, 2022, 237, 1790-1803.	2.0	8
136	Molecular structure, gene expression and functional role of <scp>WFDC1</scp> in angiogenesis and cancer. Cell Biochemistry and Function, 2021, 39, 588-595.	1.4	7
137	CYT387, a JAK-Specific Inhibitor Impedes Osteoclast Activity and Oophorectomy-Induced Osteoporosis via Modulating RANKL and ROS Signaling Pathways. Frontiers in Pharmacology, 2022, 13, 829862.	1.6	7
138	Tiliroside is a new potential therapeutic drug for osteoporosis in mice. Journal of Cellular Physiology, 2019, 234, 16263-16274.	2.0	6
139	Scutellarein inhibits RANKLâ€induced osteoclast formation in vitro and prevents LPSâ€induced bone loss in vivo. Journal of Cellular Physiology, 2019, 234, 11951-11959.	2.0	6
140	Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function. Frontiers in Cell and Developmental Biology, 2020, 8, 450.	1.8	6
141	The molecular structure and function of sorting nexin 10 in skeletal disorders, cancers, and other pathological conditions. Journal of Cellular Physiology, 2021, 236, 4207-4215.	2.0	6
142	The effects of biophysical stimulation on osteogenic differentiation and the mechanisms from <scp>ncRNAs</scp> . Cell Biochemistry and Function, 2021, 39, 727-739.	1.4	6
143	Morin attenuates osteoclast formation and function by suppressing the <scp>NFâ€PB</scp> , <scp>MAPK</scp> and calcium signalling pathways. Phytotherapy Research, 2021, 35, 5694-5707.	2.8	6
144	Molecular structure, expression, and the emerging role of Siglecâ€15 in skeletal biology and cancer. Journal of Cellular Physiology, 2022, 237, 1711-1719.	2.0	6

#	Article	IF	CITATIONS
145	Circular <scp>RNAs</scp> in childhoodâ€related diseases and cancers: A review. Cell Biochemistry and Function, 2021, 39, 458-467.	1.4	5
146	Single-cell RNA-seq identification of four differentially expressed survival-related genes by a TARGET: Osteosarcoma database analysis. Experimental Biology and Medicine, 2022, 247, 921-930.	1.1	5
147	Onc201 reduces osteoclastogenesis and prevents ovariectomy-induced bone loss via inhibiting RANKL-induced NFATc1 activation and the integrin signaling pathway. European Journal of Pharmacology, 2022, 923, 174908.	1.7	5
148	Patchouli Alcohol Modulates the Pregnancy X Receptor/Toll-like Receptor 4/Nuclear Factor Kappa B Axis to Suppress Osteoclastogenesis. Frontiers in Pharmacology, 2021, 12, 684976.	1.6	4
149	12-Deoxyphorbol 13-acetate inhibits RANKL-induced osteoclastogenesis via the attenuation of MAPK signaling and NFATc1 activation. International Immunopharmacology, 2021, 101, 108177.	1.7	4
150	The SQSTM1/p62 UBA domain regulates Ajuba localisation, degradation and NF-κB signalling function. PLoS ONE, 2021, 16, e0259556.	1.1	4
151	Discovery of new inhibitors against both NF- \hat{l}^{P} B and osteoclastogenesis from in-house library with $\hat{l}^{\text{+}}$, \hat{l}^{2} -unsaturated-enone fragment. Bioorganic Chemistry, 2019, 87, 638-646.	2.0	3
152	Biological insights into the rapid tissue regeneration of freshwater crayfish and crustaceans. Cell Biochemistry and Function, 2021, 39, 740-753.	1.4	3
153	Lonafarnib Inhibits Farnesyltransferase via Suppressing ERK Signaling Pathway to Prevent Osteoclastogenesis in Titanium Particle-Induced Osteolysis. Frontiers in Pharmacology, 2022, 13, 848152.	1.6	3