Klaus Leifer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6396007/publications.pdf

Version: 2024-02-01

		101384	143772
184	4,410	36	57
papers	citations	h-index	g-index
192	192	192	5541
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electron-Beam-Induced Fluorination Cycle for Long-Term Preservation of Graphene under Ambient Conditions. Nanomaterials, 2022, 12, 383.	1.9	2
2	The Influence of Residuals Combining Temperature and Reaction Time on Calcium Phosphate Transformation in a Precipitation Process. Journal of Functional Biomaterials, 2022, 13, 9.	1.8	0
3	Analysis of molecular ligand functionalization process in nano-molecular electronic devices containing densely packed nano-particle functionalization shells. Nanotechnology, 2022, 33, 255706.	1.3	2
4	Simultaneous mapping of EMCD signals and crystal orientations in a transmission electron microscope. Scientific Reports, 2021, 11, 2180.	1.6	2
5	The impact of number of repeats N on the interlayer exchange in \$\$[ext {Fe/MgO}]_{N} \$\$(001) superlattices. Scientific Reports, 2021, 11, 1942.	1.6	О
6	Influence of the Rear Interface on Composition and Photoluminescence Yield of CZTSSe Absorbers: A Case for an Al ₂ O ₃ Intermediate Layer. ACS Applied Materials & Distribution (Supplied Materials) and Supplied Materials & Distribution (Supplied Materials) a	4.0	7
7	Tuneable exchange-spring stiffness in amorphous magnetic trilayer structures. Journal of Physics Condensed Matter, 2021, 33, 445803.	0.7	1
8	Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. Nanoscale, 2021, 13, 13072-13084.	2.8	12
9	Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes. ACS Applied Materials & Earbon Nanotubes.	4.0	10
10	Fabrication of BP2T functionalized graphene via non-covalent π–π stacking interactions for enhanced ammonia detection. RSC Advances, 2021, 11, 35982-35987.	1.7	2
11	Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. Nanoscale, 2020, 12, 16730-16737.	2.8	26
12	Tailoring ultra-fast charge transfer in MoS2. Physical Chemistry Chemical Physics, 2020, 22, 10335-10342.	1.3	12
13	High-temperature decomposition of Cu ₂ BaSnS ₄ with Sn loss reveals newly identified compound Cu ₂ Ba ₃ Sn ₂ S ₈ . Journal of Materials Chemistry A, 2020, 8, 11346-11353.	5.2	8
14	Nanomolecular electronic devices based on AuNP molecule nanoelectrodes using molecular place-exchange process. Nanotechnology, 2020, 31, 225207.	1.3	3
15	Comment on "Quantum interference effects in biphenyl dithiol for gas detection―by J. Prasongkit and A. R. Rocha, RSC Adv., 2016, 64, 59299–59304. RSC Advances, 2020, 10, 2073-2074.	1.7	1
16	Direct writing of lateral fluorographene nanopatterns with tunable bandgaps and its application in new generation of moiré superlattice. Applied Physics Reviews, 2020, 7, .	5.5	18
17	Optimization and analysis of pyrene-maltose functionalized graphene surfaces for Con A detection. Applied Surface Science, 2020, 510, 145409.	3.1	9
18	Atomic resolution energy-loss magnetic chiral dichroism measurements enabled by patterned apertures. Physical Review Research, 2020, 2, .	1.3	7

#	Article	IF	Citations
19	Nanoparticle Bridges for Studying Electrical Properties of Organic Molecules and Gas Sensor Applications. Methods in Molecular Biology, 2020, 2118, 305-325.	0.4	O
20	The Effect of Coating Density on Functional Properties of SiNx Coated Implants. Materials, 2019, 12, 3370.	1.3	8
21	3D analysis of human islet amyloid polypeptide crystalline structures in Drosophila melanogaster. PLoS ONE, 2019, 14, e0223456.	1.1	2
22	Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries. Scientific Reports, 2019, 9, 14621.	1.6	21
23	Towards Quantitative Nanomagnetism in Transmission Electron Microscope by the Use of Patterned Apertures. Microscopy and Microanalysis, 2019, 25, 654-655.	0.2	1
24	Size-dependent elasticity of gold nanoparticle measured by atomic force microscope based nanoindentation. Applied Physics Letters, 2019, 115 , .	1.5	11
25	Towards Functional Silicon Nitride Coatings for Joint Replacements. Coatings, 2019, 9, 73.	1.2	14
26	Radiative emission from Cu2ZnSnS4/ZnSn core/shell nanocrystals. Journal of Materials Chemistry C, 2019, 7, 6129-6133.	2.7	1
27	Luminescent CeO2:Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures. Biosensors and Bioelectronics, 2019, 132, 286-293.	5.3	24
28	A sub 20 nm metal-conjugated molecule junction acting as a nitrogen dioxide sensor. Nanoscale, 2019, 11, 6571-6575.	2.8	12
29	MicroRNA detection based on duplex-specific nuclease-assisted target recycling and gold nanoparticle/graphene oxide nanocomposite-mediated electrocatalytic amplification. Biosensors and Bioelectronics, 2019, 127, 188-193.	5.3	28
30	Quantitative EMCD by use of a double aperture for simultaneous acquisition of EELS. Ultramicroscopy, 2019, 196, 192-196.	0.8	14
31	Effect of nanosectioning on surface features and stiffness of an amorphous glassy polymer. Polymer Engineering and Science, 2018, 58, 1849-1857.	1.5	2
32	Composition, structure and magnetic properties of ultra-thin Fe/Ni multilayers sputter deposited on epitaxial Cu/Si(001). Thin Solid Films, 2018, 646, 117-125.	0.8	6
33	Ultrastrong Translucent Glass Ceramic with Nanocrystalline, Biomimetic Structure. Nano Letters, 2018, 18, 7146-7154.	4.5	29
34	Case study of a green nanoporous material from synthesis to commercialisation: Quartzene $\hat{A}^{@}$. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 101-109.	3.2	6
35	Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering. Small, 2018, 14, e1801346.	5.2	106
36	Comparison of test methods estimating the stiffness of ultrathin coatings. Journal of Coatings Technology Research, 2018, 15, 743-752.	1.2	9

#	Article	IF	Citations
37	Superior adhesion of graphene nanoscrolls. Communications Physics, 2018, 1, .	2.0	24
38	An electron energy loss spectrometer based streak camera for time resolved TEM measurements. Ultramicroscopy, 2017, 176, 5-10.	0.8	1
39	Chemically and morphologically distinct grain boundaries in Ge-doped Cu2ZnSnSe4 solar cells revealed with STEM-EELS. Materials and Design, 2017, 122, 102-109.	3.3	16
40	Designing sterically demanding thiolate coated AuNPs for electrical characterization of BPDT in a NP–molecule–nanoelectrode platform. Molecular Systems Design and Engineering, 2017, 2, 133-139.	1.7	8
41	Electron tomography analysis of 3D interfacial nanostructures appearing in annealed Si rich SiC films. Nanoscale, 2017, 9, 6703-6710.	2.8	4
42	Polymer fracture and deformation during nanosectioning in an ultramicrotome. Engineering Fracture Mechanics, 2017, 182, 595-606.	2.0	22
43	White‣ight Photoassisted Covalent Functionalization of Graphene Using 2â€Propanol. Small Methods, 2017, 1, 1700214.	4.6	22
44	Localization of magnetic circular dichroic spectra in transmission electron microscopy experiments with atomic plane resolution. Physical Review B, 2017, 95, .	1.1	9
45	Rate effects on localized shear deformation during nanosectioning of an amorphous thermoplastic polymer. International Journal of Solids and Structures, 2017, 129, 40-48.	1.3	18
46	Crystal perfection by strain engineering: The case of Fe/V (001). Thin Solid Films, 2017, 636, 608-614.	0.8	14
47	Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface. Scientific Reports, 2017, 7, 44802.	1.6	15
48	A general strategy for template-free and low-cost synthesis of inorganic hollow spheres. Powder Technology, 2017, 319, 163-171.	2.1	8
49	The usage of data compression for the background estimation of electron energy loss spectra. Ultramicroscopy, 2017, 181, 117-122.	0.8	12
50	Template-free synthesis of phosphate-based spheres via modified supersaturated phosphate buffer solutions. Journal of Materials Science: Materials in Medicine, 2017, 28, 99.	1.7	6
51	Enhanced gas sensing performance of graphene/ZnS-CdS hetero-nanowires gas sensor synthesized by Langmuir-Blodgett self-assembly method. Journal of Physics: Conference Series, 2017, 922, 012023.	0.3	2
52	Broadband Optical Absorption Caused by the Plasmonic Response of Coalesced Au Nanoparticles Embedded in a TiO ₂ Matrix. Journal of Physical Chemistry C, 2016, 120, 16931-16945.	1.5	31
53	Massive Ta diffusion observed in Cu thin films but not in Ag counterparts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	3
54	Site-selective local fluorination of graphene induced by focused ion beam irradiation. Scientific Reports, 2016, 6, 19719.	1.6	36

#	Article	IF	Citations
55	Surface defect passivation by a thin metallic barrier for Cu(InxGa1-x)Se2 co-evaporation on Cr-steel substrates. Thin Solid Films, 2016, 619, 220-226.	0.8	2
56	A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes. Microscopy and Microanalysis, 2016, 22, 250-256.	0.2	13
57	Biomineralization on single crystalline rutile: the modulated growth of hydroxyapatite by fibronectin in a simulated body fluid. RSC Advances, 2016, 6, 35507-35516.	1.7	19
58	Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere. Nanotechnology, 2016, 27, 365601.	1.3	6
59	Cu ₂ ZnSnSe ₄ solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer. Progress in Photovoltaics: Research and Applications, 2016, 24, 1359-1367.	4.4	77
60	Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene. Nature Communications, 2016, 7, 12962.	5.8	58
61	Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4. Scientific Reports, 2016, 6, 21316.	1.6	43
62	Detection of magnetic circular dichroism with subnanometer convergent electron beams. Physical Review B, 2016, 94, .	1.1	32
63	Cooperative Gold Nanoparticle Stabilization by Acetylenic Phosphaalkenes. Angewandte Chemie - International Edition, 2015, 54, 10634-10638.	7.2	15
64	Indium Tin Oxide - Silicon Nanocrystal Nanocomposite Grown by Aerosol-Assisted Chemical Vapour Deposition. ECS Transactions, 2015, 66, 17-21.	0.3	0
65	A Cryo-FIB Lift-Out Procedure for Cryo-TEM Sample Preparation at Soft-Hard Matter Interfaces. Microscopy and Microanalysis, 2015, 21, 2315-2316.	0.2	0
66	Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds. Scientific Reports, 2015, 5, 14431.	1.6	21
67	Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 10) surface using electron magnetic circular dichroism. Scientific Reports, 2015, 5, 13012.	1.6	27
68	Fabrication of reproducible sub-5 nm nanogaps by a focused ion beam and observation of Fowler-Nordheim tunneling. Applied Physics Letters, 2015, 107, .	1.5	23
69	Large Efficiency Improvement in Cu ₂ ZnSnSe ₄ Solar Cells by Introducing a Superficial Ge Nanolayer. Advanced Energy Materials, 2015, 5, 1501070.	10.2	188
70	Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon, 2015, 91, 506-517.	5.4	49
71	Solar Cells: Large Efficiency Improvement in Cu2ZnSnSe4Solar Cells by Introducing a Superficial Ge Nanolayer (Adv. Energy Mater. 21/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	0
72	B11-P-01Magnetocrystalline anisotropy of hexagonal Co by relative intensities of electron magnetic circular dichroic signals. Microscopy (Oxford, England), 2015, 64, i78.1-i78.	0.7	0

#	Article	IF	Citations
73	Nanocrystal size distribution analysis from transmission electron microscopy images. Nanoscale, 2015, 7, 20593-20606.	2.8	8
74	Thin films composed of gold nanoparticles dispersed in a dielectric matrix: The influence of the host matrix on the optical and mechanical responses. Thin Solid Films, 2015, 596, 8-17.	0.8	28
75	Indium tin oxide–silicon nanocrystal nanocomposite grown by aerosol assisted chemical vapour deposition. Journal of Sol-Gel Science and Technology, 2015, 73, 666-672.	1.1	3
76	Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers. Applied Physics Letters, 2015, 106, .	1.5	22
77	Complex Surface Chemistry of Kesterites: Cu/Zn Reordering after Low Temperature Postdeposition Annealing and Its Role in High Performance Devices. Chemistry of Materials, 2015, 27, 5279-5287.	3.2	99
78	Microstructural evolution of Au/TiO2 nanocomposite films: The influence of Au concentration and thermal annealing. Thin Solid Films, 2015, 580, 77-88.	0.8	43
79	Stability optimisation of molecular electronic devices based on Ânanoelectrode–nanoparticle bridge platform in air and different storage liquids. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	6
80	Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications. BioMed Research International, 2014, 2014, 1-13.	0.9	66
81	Growth of polycrystalline Ag/Ni multilayers at room temperature. Thin Solid Films, 2014, 558, 184-188.	0.8	0
82	Cryo-electron Microscopy Specimen Preparation By Means Of a Focused Ion Beam. Journal of Visualized Experiments, 2014, , e51463.	0.2	4
83	Optoelectronic properties of p-i-n heterojunctions based on germanium nanocrystals. Journal of Applied Physics, $2013,114,\ldots$	1.1	1
84	Identification of vibrational signatures from short chains of interlinked molecule–nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy. Nanoscale, 2013, 5, 4673.	2.8	14
85	Silicon nanocrystals: Novel synthesis routes for photovoltaic applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 649-657.	0.8	8
86	Noncovalent Functionalization of Graphene in Suspension. ISRN Organic Chemistry, 2013, 2013, 1-7.	1.0	0
87	Formulations for Freeze-drying of Bacteria and Their Influence on Cell Survival. Journal of Visualized Experiments, 2013, , .	0.2	10
88	Direct ″Click″ Synthesis of Hybrid Bisphosphonate–Hyaluronic Acid Hydrogel in Aqueous Solution for Biomineralization. Chemistry of Materials, 2012, 24, 1690-1697.	3.2	47
89	A site-specific focused-ion-beam lift-out method for cryo Transmission Electron Microscopy. Journal of Structural Biology, 2012, 180, 572-576.	1.3	63
90	Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth. Thin Solid Films, 2012, 522, 136-144.	0.8	7

#	Article	IF	Citations
91	Nanoparticle Bridges for Studying Electrical Properties of Organic Molecules. , 2012, 906, 535-546.		2
92	Improved gas sensing activity in structurally defected bilayer graphene. Nanotechnology, 2012, 23, 505501.	1.3	61
93	Formation and NMR Spectroscopy of ω-Thiol Protected α,ω-Alkanedithiol-Coated Gold Nanoparticles and Their Usage in Molecular Charge Transport Junctions. Langmuir, 2011, 27, 9057-9067.	1.6	22
94	Two-, Three-, and Four-Component Magnetic Multilayer Onion Nanoparticles Based on Iron Oxides and Manganese Oxides. Journal of the American Chemical Society, 2011, 133, 16738-16741.	6.6	55
95	Coronene Fusion by Heat Treatment: Road to Nanographenes. Journal of Physical Chemistry C, 2011, 115, 13207-13214.	1.5	52
96	Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philosophical Magazine, 2011, 91, 1190-1199.	0.7	111
97	Instrumental developments for in situ breakdown experiments inside a scanning electron microscope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 657, 122-125.	0.7	3
98	Experimental and theoretical studies on stainless steel transfer onto a TiN-coated cutting tool. Acta Materialia, 2011, 59, 68-74.	3.8	25
99	Effect of gallium grading in Cu(In,Ga)Se2 solar-cell absorbers produced by multi-stage coevaporation. Solar Energy Materials and Solar Cells, 2011, 95, 721-726.	3.0	57
100	Impact of matrix properties on the survival of freezeâ€dried bacteria. Journal of the Science of Food and Agriculture, 2011, 91, 2518-2528.	1.7	28
101	Control of junction resistances in molecular electronic devices fabricated by FIB. Microelectronic Engineering, 2011, 88, 2629-2631.	1.1	11
102	Enabling measurements of low-conductance single molecules using gold nanoelectrodes. Nanotechnology, 2011, 22, 125707.	1.3	11
103	Local electronic structure information contained in energy-filtered diffraction patterns. Physical Review B, 2011, 84, .	1.1	36
104	Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements. Physical Review B, 2011, 83, .	1.1	24
105	Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Physical Review B, 2011, 83, .	1.1	36
106	Immobilization of oligonucleotide-functionalized magnetic nanobeads in DNA-coils studied by electron microscopy and atomic force microscopy. Materials Research Society Symposia Proceedings, 2011, 1355, 1.	0.1	1
107	An <l>ln-Situ</l> Prepared Nano-Manipulator Tip for Electrical Characterization of Free Standing Graphene Like Sheets Inside a Focused Ion Beam/Scanning Electron Microscope. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 162-168.	0.1	0
108	Reciprocal and real space maps for EMCD experiments. Ultramicroscopy, 2010, 110, 1380-1389.	0.8	38

#	Article	IF	Citations
109	Structural and magnetic properties of multilayers. Journal of Crystal Growth, 2010, 312, 580-586.	0.7	10
110	Quantitative magnetic measurements with transmission electron microscope. Journal of Magnetism and Magnetic Materials, 2010, 322, 1478-1480.	1.0	12
111	Highly amorphous Fe90Zr10 thin films, and the influence of crystallites on the magnetism. Thin Solid Films, 2010, 519, 404-409.	0.8	36
112	Asymmetry of the twoâ€beam geometry in EMCD experiments. Journal of Microscopy, 2010, 237, 465-468.	0.8	19
113	Biomimetic calcium phosphate coatings on recombinant spider silk fibres. Biomedical Materials (Bristol), 2010, 5, 045002.	1.7	26
114	Assessment of a nanoparticle bridge platform for molecular electronics measurements. Nanotechnology, 2010, 21, 435204.	1.3	20
115	Simulation of magnetic circular dichroism in the electron microscope. Journal Physics D: Applied Physics, 2010, 43, 474005.	1.3	14
116	Conductivity engineering of graphene by defect formation. Journal Physics D: Applied Physics, 2010, 43, 045404.	1.3	89
117	Real-Space Transmission Electron Microscopy Investigations of Attachment of Functionalized Magnetic Nanoparticles to DNA-Coils Acting as a Biosensor. Journal of Physical Chemistry B, 2010, 114, 13255-13262.	1.2	24
118	Spatial Mapping of Elemental Distributions in Polypyrrole-Cellulose Nanofibers using Energy-Filtered Transmission Electron Microscopy. Journal of Physical Chemistry B, 2010, 114, 13644-13649.	1,2	22
119	Low-temperature synthesis of photoconducting CdTe nanotetrapods. Journal of Materials Chemistry, 2010, 20, 1208-1214.	6.7	11
120	Spin and orbital moment in amorphous <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml:mrow><hpml< td=""><td>/> 1.11ml:m</td><td>n ⅓68</td></hpml<></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></hpml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	/> 1.1 1ml:m	n ⅓68
121	Quantitative Magnetic Information from Reciprocal Space Maps in Transmission Electron Microscopy. Physical Review Letters, 2009, 102, 037201.	2.9	61
122	Brittleâ€toâ€Ductile Transition in Uniaxial Compression of Silicon Pillars at Room Temperature. Advanced Functional Materials, 2009, 19, 2439-2444.	7.8	254
123	The effect of Zn _{<i>1â€x</i>} Mg _{<i>x</i>} O buffer layer deposition temperature on Cu(In,Ga)Se ₂ solar cells: A study of the buffer/absorber interface. Progress in Photovoltaics: Research and Applications, 2009, 17, 115-125.	4.4	36
124	Imprinting layer specific magnetic anisotropies in amorphous multilayers. Journal of Applied Physics, 2009, 106, 023918.	1.1	37
125	Using a molten organic conducting material to infiltrate a nanoporous semiconductor film and its use in solid-state dye-sensitized solar cells. Synthetic Metals, 2009, 159, 166-170.	2.1	28
126	Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene. Journal Physics D: Applied Physics, 2009, 42, 112003.	1.3	64

#	Article	IF	CITATIONS
127	Structural coherence and layer perfection in Fe/MgO multilayers. Journal of Physics Condensed Matter, 2008, 20, 055212.	0.7	8
128	EMCD in the TEM $\hat{a} \in$ Optimization of signal acquisition and data evaluation. Microscopy and Microanalysis, 2008, 14, 1148-1149.	0.2	3
129	Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling., 2008,, 651-652.		1
130	Focused ion beam fabrication procedures of x-ray micro fresnel zone plates. Journal of Micromechanics and Microengineering, 2007, 17, 617-622.	1.5	13
131	Morphology of amorphousFe91Zr9â^•Al2O3multilayers: Dewetting and crystallization. Physical Review B, 2007, 75, .	1.1	13
132	Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Applied Physics Letters, 2007, 90, 043123.	1.5	132
133	Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling. Nanotechnology, 2007, 18, 285301.	1.3	42
134	Narrow (â‰^4meV) inhomogeneous broadening and its correlation with confinement potential of pyramidal quantum dot arrays. Applied Physics Letters, 2007, 91, 081106.	1.5	29
135	Strongly reduced exciton transfer between parallel quantum wires. Applied Physics Letters, 2007, 90, 101108.	1.5	7
136	Mechanisms of Quantum Dot Energy Engineering by Metalorganic Vapor Phase Epitaxy on Patterned Nonplanar Substrates. Nano Letters, 2007, 7, 1282-1285.	4.5	51
137	Magnetic and transport properties of Ni81Fe19â^•Al2O3 granular multilayers approaching the superparamagnetic limit. Journal of Applied Physics, 2007, 101, 073907.	1.1	13
138	Alloy Segregation, Quantum Confinement, and Carrier Capture in Self-Ordered Pyramidal Quantum Wires. Nano Letters, 2006, 6, 1036-1041.	4.5	39
139	Polarization-resolved optical absorption in single V-groove quantum wires. Applied Physics Letters, 2006, 89, 191111.	1.5	8
140	Influence of long-range substrate roughness on disorder in V-groove quantum wire structures. Journal of Applied Physics, 2006, 100, 123509.	1.1	2
141	Enhancement of the binding energy of charged excitons in disordered quantum wires. Physical Review B, 2005, 71, .	1.1	21
142	Carrier Tunneling between Parallel GaAs/AlGaAs V-groove Quantum Wires. AIP Conference Proceedings, 2005, , .	0.3	0
143	Patterning of confined-state energies in site-controlled semiconductor quantum dots. Applied Physics Letters, 2005, 86, 243105.	1.5	11
144	Electroluminescence and photoluminescence excitation study of asymmetric coupledGaAsâ^•AlxGa1â^'xAsV-groove quantum wires. Physical Review B, 2004, 70, .	1.1	8

#	Article	IF	Citations
145	Localization of excitons in disordered quantum wires probed by single-photon correlation spectroscopy. Applied Physics Letters, 2004, 85, 5715-5717.	1.5	8
146	Dense uniform arrays of site-controlled quantum dots grown in inverted pyramids. Applied Physics Letters, 2004, 84, 2907-2909.	1.5	50
147	Growth and optical characterization of dense arrays of site-controlled quantum dots grown in inverted pyramids. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 193-198.	1.3	4
148	Electron beam induced deposition of rhodium from the precursor [RhCl(PF3)2]2: morphology, structure and chemical composition. Journal of Crystal Growth, 2004, 265, 619-626.	0.7	27
149	Site-controlled quantum dots grown in inverted pyramids for photonic crystal applications. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 476-481.	1.3	23
150	Site- and energy-controlled pyramidal quantum dot heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 288-297.	1.3	40
151	High internal quantum efficiency, narrow linewidth InGaAs/GaAs/AlGaAs quantum wire light-emitting diodes. Applied Physics Letters, 2002, 81, 2839-2841.	1.5	25
152	Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Physical Review B, 2002, 65, .	1.1	117
153	Analytical electron microscopy as a tool for accessing colloid formation process in natural waters. Journal of Microscopy, 2002, 207, 180-190.	0.8	26
154	Quantitative imaging of InGaAs/GaAs layers using transmission electron microscopy methods: characterization of stresses and chemical composition. Journal of Crystal Growth, 2002, 237-239, 1471-1475.	0.7	16
155	Cathodoluminescence of epitaxial GaN laterally overgrown on (0001) sapphire substrate. Time evolution with low energy electron beam. Journal of Applied Physics, 2001, 89, 7966-7972.	1.1	15
156	Direct Observation of New Transitions in the Absorption Spectra of a V-Groove Quantum Wire Waveguide. Physica Status Solidi A, 2000, 178, 233-237.	1.7	12
157	Strained V-groove quantum wires in multidimensional microcavities. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 158-164.	1.7	7
158	Theoretical and experimental limits of the analysis of III/V semiconductors using EELS. Micron, 2000, 31, 411-427.	1.1	8
159	Electron beam induced deposition of metallic tips and wires for microelectronics applications. Microelectronic Engineering, 2000, 53, 261-264.	1.1	44
160	Strain mapping of V-groove InGaAs/GaAs strained quantum wires using cross-sectional Atomic Force Microscopy. Applied Surface Science, 2000, 166, 290-294.	3.1	11
161	Defect diffusion and strain relaxation in epitaxial GaN laterally overgrown on (0001) sapphire under low energy electron beam irradiation. Journal of Physics Condensed Matter, 2000, 12, 10271-10278.	0.7	7
162	Influence of strain and quantum confinement on the optical properties of InGaAs/GaAs V-groove quantum wires. Journal of Applied Physics, 2000, 88, 141-147.	1.1	20

#	Article	IF	CITATIONS
163	Carrier transport and luminescence in inverted-pyramid quantum structures. Applied Physics Letters, 2000, 77, 3923-3925.	1.5	24
164	Observation of photoinduced intersubband transitions in one-dimensional semiconductor quantum wires. Physical Review B, 2000, 62, 9935-9938.	1.1	14
165	Focused Electron Beam Induced Deposition of Gold and Rhodium. Materials Research Society Symposia Proceedings, 2000, 624, 171.	0.1	20
166	Focused electron beam induced deposition of gold. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3168.	1.6	151
167	Structure and optical properties of semiconductor quantum nanostructures self-formed in inverted tetrahedral pyramids. Journal of Physics Condensed Matter, 1999, 11, 5901-5915.	0.7	60
168	Two-dimensional quantum-confined Stark effect in V-groove quantum wires: Excited state spectroscopy and theory. Applied Physics Letters, 1999, 74, 2334-2336.	1.5	19
169	Effect of indium segregation on optical properties of V-groove InGaAs/GaAs strained quantum wires. Applied Physics Letters, 1999, 75, 3300-3302.	1.5	17
170	Cathodoluminescence intensity and dislocation contrast evolutions under electron beam excitation in epitaxial GaN laterally overgrown on (0001) sapphire. Physica B: Condensed Matter, 1999, 273-274, 148-151.	1.3	15
171	Optimization of the metamorphic growth of GaAs for long wavelength VCSELs. Journal of Crystal Growth, 1999, 201-202, 1015-1019.	0.7	13
172	Organometallic chemical vapor deposition of V-groove InGaAs/GaAs quantum wires incorporated in planar Bragg microcavities. Journal of Crystal Growth, 1999, 207, 161-173.	0.7	11
173	Mechanisms of self-ordering of nanostructures in nonplanar OMCVD growth. Journal of Crystal Growth, 1998, 195, 596-602.	0.7	6
174	Structure and photoluminescence of single AlGaAs/GaAs quantum dots grown in inverted tetrahedral pyramids. Applied Physics Letters, 1998, 73, 2322-2324.	1.5	44
175	Carrier quantum confinement in self-orderedAlxGa1â^xxAsV-groove quantum wells. Physical Review B, 1997, 56, R7096-R7099.	1.1	17
176	Structural and Chemical Characterisation of Ni/Ti Multilayers with TEM. Materials Research Society Symposia Proceedings, 1995, 382, 173.	0.1	1
177	EDS and EELS using a TEM-FEG microscope. Ultramicroscopy, 1995, 58, 35-41.	0.8	10
178	Development of Ni/Ti multilayer supermirrors for neutron optics. Thin Solid Films, 1994, 246, 110-119.	0.8	57
179	Growth and Investigation of Ni/Ti Multilayers. Materials Science Forum, 1993, 126-128, 615-618.	0.3	5
180	<title>Thin films for neutron optics</title> ., 1992,,.		4

#	Article	IF	CITATIONS
181	Characterization of short-period Sim Gen superlattices by high-resolution transmission electron microscopy and X-ray diffraction. Thin Solid Films, 1992, 222, 221-226.	0.8	28
182	InGaAs/GaAs strained quantum wires grown by OMCVD on corrugated substrates. , 0, , .		2
183	Efficient, narrow linewidth emission from InGaAs/AlGaAs V-groove quantum wire light-emitting diodes. , 0, , .		O
184	Comparative Characterisation of CNS/Epoxy and BN/Epoxy Nanodielectrics Using Electrical Tree PD Measurements and Atomic Force Microscopy. International Journal of Engineering Research in Africa, 0, 48, 24-37.	0.7	1