Zhen-Bo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6396/publications.pdf Version: 2024-02-01

ZHEN-RO WANC

#	Article	IF	CITATIONS
1	Septin 4 controls CCNB1 stabilization via APC/C ^{CDC20} during meiotic G2/M transition in mouse oocytes. Journal of Cellular Physiology, 2022, 237, 730-742.	4.1	2
2	Gm364 coordinates MIB2/DLL3/Notch2 to regulate female fertility through AKT activation. Cell Death and Differentiation, 2022, 29, 366-380.	11.2	7
3	Identification of a heterozygous variant of <i>ZP2</i> as a novel cause of empty follicle syndrome in humans and mice. Human Reproduction, 2022, 37, 859-872.	0.9	7
4	Kinetochore scaffold 1 regulates SAC function during mouse oocyte meiotic maturation. FASEB Journal, 2022, 36, e22210.	0.5	1
5	MAPRE2 regulates the first meiotic progression in mouse oocytes. Experimental Cell Research, 2022, 416, 113135.	2.6	1
6	Epitalon protects against post-ovulatory aging-related damage of mouse oocytes in vitro. Aging, 2022, 14, 3191-3202.	3.1	1
7	Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nature Biomedical Engineering, 2022, 6, 339-350.	22.5	25
8	PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development (Cambridge), 2022, 149, .	2.5	2
9	Effects of m <scp>itochondriaâ€associated</scp> Ca ²⁺ transporters suppression on oocyte activation. Cell Biochemistry and Function, 2021, 39, 248-257.	2.9	4
10	Single-cell RNA sequencing reveals species-specific time spans of cell cycle transitions in early oogenesis. Human Molecular Genetics, 2021, 30, 525-535.	2.9	1
11	FBXO34 Regulates the G2/M Transition and Anaphase Entry in Meiotic Oocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 647103.	3.7	7
12	PTHrP promotes development of mouse preimplantation embryos through the AKT/cyclin D1 pathway and nuclear translocation of HDAC4. Journal of Cellular Physiology, 2021, 236, 7001-7013.	4.1	0
13	Inhibition of CDK4/6 kinases causes production of aneuploid oocytes by inactivating the spindle assembly checkpoint and accelerating first meiotic progression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119044.	4.1	3
14	Diabetic Uterine Environment Leads to Disorders in Metabolism of Offspring. Frontiers in Cell and Developmental Biology, 2021, 9, 706879.	3.7	4
15	Specific deletion of protein phosphatase 6 catalytic subunit in Sertoli cells leads to disruption of spermatogenesis. Cell Death and Disease, 2021, 12, 883.	6.3	5
16	METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death and Disease, 2021, 12, 989.	6.3	31
17	Inhibiting bridge integrator 2 phosphorylation leads to improved oocyte quality, ovarian health and fertility in aging and after chemotherapy in mice. Nature Aging, 2021, 1, 1010-1023.	11.6	5
18	Degradation of Ccnb3 is essential for maintenance of MII arrest in oocyte. Biochemical and Biophysical Research Communications, 2020, 521, 265-269.	2.1	13

ZHEN-BO WANG

#	Article	IF	CITATIONS
19	Type 1 diabetes affects zona pellucida and genome methylation in oocytes and granulosa cells. Molecular and Cellular Endocrinology, 2020, 500, 110627.	3.2	10
20	Protein phosphatase 6 is a key factor regulating spermatogenesis. Cell Death and Differentiation, 2020, 27, 1952-1964.	11.2	15
21	Deletion of <i>Ck2β</i> gene causes germ cell development arrest and azoospermia in male mice. Cell Proliferation, 2020, 53, e12726.	5.3	5
22	RNA-Seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization. BMC Genomics, 2020, 21, 475.	2.8	22
23	Cell division cycle 23 is required for mouse oocyte meiotic maturation. FASEB Journal, 2020, 34, 8990-9002.	0.5	5
24	Singleâ€cell RNA sequencing reveals the landscape of early female germ cell development. FASEB Journal, 2020, 34, 12634-12645.	0.5	38
25	PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome. Nature Communications, 2020, 11, 6354.	12.8	36
26	Chronic cadmium exposure causes oocyte meiotic arrest by disrupting spindle assembly checkpoint and maturation promoting factor. Reproductive Toxicology, 2020, 96, 141-149.	2.9	17
27	Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development. Molecular Reproduction and Development, 2020, 87, 550-564.	2.0	3
28	CENP-T, regulates both G2/M transition and anaphase entry by acting through CDH1 in meiotic oocytes. Journal of Cell Science, 2020, 133, .	2.0	4
29	Single-cell RNA sequencing reveals regulation of fetal ovary development in the monkey (Macaca) Tj ETQq1 1 0.7	784314 rg 6.7	BT /Overlock
30	CENP-W regulates kinetochore-microtubule attachment and meiotic progression of mouse oocytes. Biochemical and Biophysical Research Communications, 2020, 527, 8-14.	2.1	1
31	Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death and Differentiation, 2019, 26, 969-980.	11.2	10
32	<i>Mettl14</i> is required for mouse postimplantation development by facilitating epiblast maturation. FASEB Journal, 2019, 33, 1179-1187.	0.5	60
33	NEK5 regulates cell cycle progression during mouse oocyte maturation and preimplantation embryonic development. Molecular Reproduction and Development, 2019, 86, 1189-1198.	2.0	6
34	Absence of mitochondrial DNA methylation in mouse oocyte maturation, aging and early embryo development. Biochemical and Biophysical Research Communications, 2019, 513, 912-918.	2.1	18
35	Meiotic chromatid recombination and segregation assessed with human single cell genome sequencing data. Journal of Medical Genetics, 2019, 56, 156-163.	3.2	4
36	N-acetyl-L-cysteine (NAC) delays post-ovulatory oocyte aging in mouse. Aging, 2019, 11, 2020-2030.	3.1	36

ZHEN-BO WANG

#	Article	IF	CITATIONS
37	The small GTPase RhoA regulates the LIMK1/2 ofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis. Journal of Cellular Physiology, 2018, 233, 6088-6097.	4.1	17
38	Type 2 diabetes increases oocyte mtDNA mutations which are eliminated in the offspring by bottleneck effect. Reproductive Biology and Endocrinology, 2018, 16, 110.	3.3	13
39	Glucocorticoid exposure affects female fertility by exerting its effect on the uterus but not on the oocyte: lessons from a hypercortisolism mouse model. Human Reproduction, 2018, 33, 2285-2294.	0.9	9
40	Ablation of beta subunit of protein kinase CK2 in mouse oocytes causes follicle atresia and premature ovarian failure. Cell Death and Disease, 2018, 9, 508.	6.3	16
41	CenpH regulates meiotic G2/M transition by modulating the APC/CCdh1-cyclin B1 pathway in oocytes. Development (Cambridge), 2017, 144, 305-312.	2.5	7
42	Oocyte-specific deletion of furin leads to female infertility by causing early secondary follicle arrest in mice. Cell Death and Disease, 2017, 8, e2846-e2846.	6.3	15
43	Removal of mouse ovary fat pad affects sex hormones, folliculogenesis and fertility. Journal of Endocrinology, 2017, 232, 155-164.	2.6	19
44	Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging, 2017, 9, 2480-2488.	3.1	36
45	Geminin deletion in pre-meiotic DNA replication stage causes spermatogenesis defect and infertility. Journal of Reproduction and Development, 2017, 63, 481-488.	1.4	1
46	Sperm-carried RNAs play critical roles in mouse embryonic development. Oncotarget, 2017, 8, 67394-67405.	1.8	66
47	Exposure to Aroclorâ€1254 impairs spindle assembly during mouse oocyte maturation. Environmental Toxicology, 2016, 31, 1652-1662.	4.0	9
48	N6-Methyladenosine Sequencing Highlights the Involvement of mRNA Methylation in Oocyte Meiotic Maturation and Embryo Development by Regulating Translation in Xenopus laevis. Journal of Biological Chemistry, 2016, 291, 23020-23026.	3.4	66
49	Oocyte-specific deletion of <i>N-WASP</i> does not affect oocyte polarity, but causes failure of meiosis II completion. Molecular Human Reproduction, 2016, 22, 613-621.	2.8	25
50	Nek11 regulates asymmetric cell division during mouse oocyte meiotic maturation. Biochemical and Biophysical Research Communications, 2016, 474, 667-672.	2.1	4
51	Geminin deletion in mouse oocytes results in impaired embryo development and reduced fertility. Molecular Biology of the Cell, 2016, 27, 768-775.	2.1	11
52	Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity. PLoS Genetics, 2016, 12, e1006513.	3.5	12
53	<i>Rad9a</i> is required for spermatogonia differentiation in mice. Oncotarget, 2016, 7, 86350-86358.	1.8	2
54	LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget, 2016, 7, 5738-5753.	1.8	44

ZHEN-BO WANG

#	Article	IF	CITATIONS
55	Cep55 regulates spindle organization and cell cycle progression in meiotic oocyte. Scientific Reports, 2015, 5, 16978.	3.3	37
56	Deletion of Mylk1 in Oocytes Causes Delayed Morula-to-Blastocyst Transition and Reduced Fertility Without Affecting Folliculogenesis and Oocyte Maturation in Mice1. Biology of Reproduction, 2015, 92, 97.	2.7	8
57	Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility. Journal of Cell Science, 2015, 128, 3769-80.	2.0	14
58	Exogenous thymine DNA glycosylase regulates epigenetic modifications and meiotic cell cycle progression of mouse oocytes. Molecular Human Reproduction, 2015, 21, 186-194.	2.8	4
59	Scaffold Subunit Aalpha of PP2A Is Essential for Female Meiosis and Fertility in Mice1. Biology of Reproduction, 2014, 91, 19.	2.7	38
60	The root of reduced fertility in aged women and possible therapentic options: Current status and future perspects. Molecular Aspects of Medicine, 2014, 38, 54-85.	6.4	117
61	The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nature Communications, 2014, 5, 4887.	12.8	102
62	WASH complex regulates Arp2/3 complex for actin-based polar body extrusion in mouse oocytes. Scientific Reports, 2014, 4, 5596.	3.3	39
63	Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocyte. Journal of Cell Science, 2013, 126, 1595-603.	2.0	37
64	Unique insights into maternal mitochondrial inheritance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13038-13043.	7.1	126
65	Specific deletion of <i>Cdc42</i> does not affect meiotic spindle organization/migration and homologous chromosome segregation but disrupts polarity establishment and cytokinesis in mouse oocytes. Molecular Biology of the Cell, 2013, 24, 3832-3841.	2.1	40
66	New Understandings on Folliculogenesis/Oogenesis Regulation in Mouse as Revealed by Conditional Knockout. Journal of Genetics and Genomics, 2012, 39, 61-68.	3.9	21
67	Why is Chromosome Segregation Error in Oocytes Increased With Maternal Aging?. Physiology, 2011, 26, 314-325.	3.1	29
68	The SUMO pathway functions in mouse oocyte maturation. Cell Cycle, 2010, 9, 2640-2646.	2.6	35
69	Bub3 Is a Spindle Assembly Checkpoint Protein Regulating Chromosome Segregation during Mouse Oocyte Meiosis. PLoS ONE, 2009, 4, e7701.	2.5	97