Krzysztof K Koziol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395966/publications.pdf

Version: 2024-02-01

66234 71532 6,283 135 42 76 citations h-index g-index papers 137 137 137 7409 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Carbon nanotube films spun from a gas phase reactor for manufacturing carbon nanotube film/carbon fibre epoxy hybrid composites for electrical applications. Carbon, 2020, 158, 282-290.	5.4	18
2	The Effect of the Gaseous Environment on the Electrical Conductivity of Multi-Walled Carbon Nanotube Films over a Wide Temperature Range. Materials, 2020, 13, 510.	1.3	4
3	Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires. ACS Applied Materials & Interfaces, 2019, 11, 33207-33220.	4.0	22
4	Copper-Decorated CNTs as a Possible Electrode Material in Supercapacitors. Batteries, 2019, 5, 60.	2.1	2
5	Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites. Nanoscale, 2019, 11, 145-157.	2.8	50
6	Advancing the Use of High-Performance Graphene-Based Multimodal Polymer Nanocomposite at Scale. Nanomaterials, 2018, 8, 947.	1.9	8
7	Free-standing films from chirality-controlled carbon nanotubes. Materials and Design, 2017, 121, 119-125.	3.3	32
8	Improving the electrical properties of carbon nanotubes with interhalogen compounds. Nanoscale, 2017, 9, 3212-3221.	2.8	54
9	Observations of copper deposition on functionalized carbon nanotube films. Electrochimica Acta, 2017, 232, 495-504.	2.6	38
10	Free-standing conductive thin films from gold-carbon nanotube composites. Materials Letters, 2017, 201, 101-104.	1.3	4
11	Printing of highly conductive carbon nanotubes fibres from aqueous dispersion. Materials and Design, 2017, 116, 16-20.	3.3	12
12	Flame-retardant carbon nanotube films. Applied Surface Science, 2017, 411, 177-181.	3.1	22
13	Thermal properties of continuously spun carbon nanotube fibres. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 104-108.	1.3	37
14	Electrical transport in carbon nanotube fibres. Scripta Materialia, 2017, 131, 112-118.	2.6	47
15	Extreme Magneto-transport of Bulk Carbon Nanotubes in Sorted Electronic Concentrations and Aligned High Performance Fiber. Scientific Reports, 2017, 7, 12193.	1.6	19
16	Breaking the electrical barrier between copper and carbon nanotubes. Nanoscale, 2017, 9, 8458-8469.	2.8	50
17	Photonic Sorting of Aligned, Crystalline Carbon Nanotube Textiles. Scientific Reports, 2017, 7, 12977.	1.6	13
18	CNT fibers p-doped with F4TCNQ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)., 2017,,.		1

#	Article	IF	Citations
19	Conductive inks of graphitic nanoparticles from a sustainable carbon feedstock. Carbon, 2017, 111, 142-149.	5.4	32
20	Charging and discharging of the electrochemically swelled, aligned carbon nanotube fibers. Electrochemistry Communications, 2016, 64, 30-34.	2.3	5
21	MWCNT based matrices as a platform for adhesion and growth of cells. Composites Science and Technology, 2016, 136, 29-38.	3.8	8
22	The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale, 2016, 8, 17262-17270.	2.8	35
23	Carbon nanotube fibers and films: synthesis, applications and perspectives of the direct-spinning method. Nanoscale, 2016, 8, 19475-19490.	2.8	108
24	Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers. Carbon, 2016, 107, 281-287.	5.4	83
25	PEG–MWCNT/Fe hybrids as multi-modal contrast agents for MRI and optical imaging. RSC Advances, 2016, 6, 49891-49902.	1.7	10
26	Effect of compression on the electronic, optical and transport properties of MoS ₂ /graphene-based junctions. 2D Materials, 2016, 3, 025018.	2.0	40
27	Synthesis of high aspect ratio WO2 nanostructures. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	3
28	The influence of metal nanoparticles on electrical properties of carbon nanotubes. Applied Surface Science, 2016, 376, 74-78.	3.1	31
29	Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale, 2016, 8, 8288-8299.	2.8	74
30	Amalgamation of complex iron(III) ions and iron nanoclusters with MWCNTs as a route to potential T2 MRI contrast agents. International Journal of Nanomedicine, 2015, 10, 3581.	3.3	8
31	Low temperature electrical transport in modified carbon nanotube fibres. Scripta Materialia, 2015, 106, 34-37.	2.6	9
32	Magnetic and hydrophilic MWCNT/Fe composites as potential T2-weighted MRI contrast agents. Carbon, 2015, 94, 1012-1020.	5.4	20
33	Poly(3,4-ethylenedioxythiophene) growth on the surface of horizontally aligned MWCNT electrode. Applied Surface Science, 2015, 335, 130-136.	3.1	11
34	Influence of atmospheric water vapour on electrical performance of carbon nanotube fibres. Carbon, 2015, 87, 18-28.	5.4	34
35	Steam reforming on reactive carbon nanotube membranes. Journal of Industrial and Engineering Chemistry, 2015, 25, 222-228.	2.9	10
36	Soldering of Carbon Materials Using Transition Metal Rich Alloys. ACS Nano, 2015, 9, 8099-8107.	7.3	27

#	Article	IF	Citations
37	A computational study of the quantum transport properties of a Cu–CNT composite. Physical Chemistry Chemical Physics, 2015, 17, 18273-18277.	1.3	28
38	Resistance–temperature dependence in carbon nanotube fibres. Carbon, 2015, 84, 118-123.	5.4	43
39	Microwave Conductivity of Sorted CNT Assemblies. Scientific Reports, 2015, 4, 3762.	1.6	17
40	En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein Journal of Nanotechnology, 2014, 5, 219-233.	1.5	73
41	Field emission from laser cut CNT fibers and films. Journal of Materials Research, 2014, 29, 392-402.	1.2	23
42	Hysteresis during field emission from chemical vapor deposition synthesized carbon nanotube fibers. Applied Physics Letters, 2014, 105, .	1.5	40
43	Direct evidence of delayed electroluminescence from carbon nanotubes on the macroscale. Applied Physics Letters, 2014, 104, .	1.5	6
44	Carbon nanotube fiber–silver hybrid electrical conductors. Materials Letters, 2014, 133, 186-189.	1.3	19
45	Effect of fibre spinning conditions on the electrical properties of cellulose and carbon nanotube composite fibres spun using ionic liquid as a benign solvent. EXPRESS Polymer Letters, 2014, 8, 154-163.	1.1	26
46	Shear-induced crystallisation of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally controlled composites. Materials Letters, 2014, 116, 53-56.	1.3	14
47	A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale, 2014, 6, 3037.	2.8	181
48	A facile water-assisted route for synthesis of tungsten dioxide (WO2) nanopowders. Powder Technology, 2014, 256, 1-4.	2.1	10
49	Replacing Copper Wires with Carbon Nanotube Wires in Electrical Transformers. Advanced Functional Materials, 2014, 24, 619-624.	7.8	65
50	Towards the development of carbon nanotube based wires. Carbon, 2014, 68, 597-609.	5.4	44
51	Facile Synthesis of Highly Stable and Water-Soluble Magnetic MWCNT/α-Fe Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 27861-27869.	1.5	8
52	Aligned carbon nanotube reinforced high performance polymer composites with low erosive wear. Composites Part A: Applied Science and Manufacturing, 2014, 67, 86-95.	3.8	17
53	Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes. RSC Advances, 2014, 4, 28826-28831.	1.7	31
54	Piezoresistive Effect in Carbon Nanotube Fibers. ACS Nano, 2014, 8, 11214-11224.	7.3	61

#	Article	IF	CITATIONS
55	Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Advanced Functional Materials, 2014, 24, 3661-3682.	7.8	401
56	A role of nanotube dangling pyrrole and oxygen functions in the electrochemical synthesis of polypyrrole/MWCNTs hybrid materials. Applied Surface Science, 2014, 317, 794-802.	3.1	7
57	lodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon, 2014, 73, 225-233.	5.4	104
58	The effect of carbon nanotube orientation on erosive wear resistance of CNT-epoxy based composites. Carbon, 2014, 73, 421-431.	5.4	37
59	Durability and surface chemistry of horizontally aligned CNT films as electrodes upon electrolysis of acidic aqueous solution. Journal of Materials Science, 2014, 49, 7231-7243.	1.7	10
60	Fe 3+ ions anchored to Fe@O-MWCNTs as double impact T 2 MRI contrast agents. Materials Letters, 2014, 136, 34-36.	1.3	7
61	Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon. Applied Surface Science, 2014, 301, 488-491.	3.1	17
62	Swift modification of resistively heated carbon nanotube films by the action of hydrogen peroxide. Materials Letters, 2014, 119, 115-118.	1.3	7
63	Electrothermal halogenation of carbon nanotube films. Carbon, 2014, 73, 259-266.	5.4	27
64	"Binary saltâ€of hexaneâ€1,6â€diaminium adipate and "carbon nanotubateâ€as a synthetic precursor of carbon nanotube/Nylonâ€6,6 hybrid materials. Polymer Composites, 2014, 35, 523-529.	2.3	4
65	Three dimensional cluster distributions in processed multi-wall carbon nanotube polymer composites. Polymer, 2014, 55, 3270-3277.	1.8	9
66	Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Scientific Reports, 2014, 4, 3903.	1.6	66
67	Improved Performance of Ultra-Fast Carbon Nanotube Film Heaters. Journal of Automation and Control Engineering, 2014, 2, 150-153.	0.3	4
68	In Situ Observation of the Effect of Nitrogen on Carbon Nanotube Synthesis. Chemistry of Materials, 2013, 25, 2921-2923.	3.2	26
69	The production of aligned MWCNT/polypyrrole composite films. Carbon, 2013, 60, 229-235.	5.4	40
70	Facile processing of zeolite based catalyst support for carbon nanotube synthesis. Materials Letters, 2013, 93, 404-407.	1.3	9
71	Rapid electrothermal response of high-temperature carbon nanotube film heaters. Carbon, 2013, 59, 457-463.	5.4	134
72	Carbon nanotube wires for high-temperature performance. Carbon, 2013, 64, 305-314.	5.4	36

#	Article	IF	Citations
73	A facile method to tune electronic properties of carbon nanotube films. Materials Letters, 2013, 106, 137-140.	1.3	16
74	Lipid nanoscaffolds in carbon nanotube arrays. Nanoscale, 2013, 5, 8992.	2.8	3
75	lonic liquids-based processing of electrically conducting chitin nanocomposite scaffolds for stem cell growth. Green Chemistry, 2013, 15, 1192.	4.6	30
76	Directing Chondrogenesis of Stem Cells with Specific Blends of Cellulose and Silk. Biomacromolecules, 2013, 14, 1287-1298.	2.6	55
77	Liberation of drugs from multi-wall carbon nanotube carriers. Journal of Controlled Release, 2013, 169, 126-140.	4.8	47
78	Electroluminescence from carbon nanotube films resistively heated in air. Applied Physics Letters, 2013, 102, .	1.5	22
79	Length-dependent electrical and thermal properties of carbon nanotube-loaded epoxy nanocomposites. Composites Science and Technology, 2013, 81, 42-47.	3.8	60
80	Oxidised multi-wall carbon nanotubes–(R)-polylactide composite with a covalent β-d-uridine filler-matrix linker. Materials Letters, 2013, 91, 50-54.	1.3	12
81	Performance of carbon nanotube wires in extreme conditions. Carbon, 2013, 62, 438-446.	5.4	56
82	Formation of Continuous Tungsten Oxide Coatings on Carbon Nanotubes Using Two Different Methods. Science of Advanced Materials, 2013, 5, 1467-1476.	0.1	0
83	Carbon Nanotubes Fibres/Aluminium-NiZnFe ₂ O ₄ Based Electromagnetic Transmitter for Improved Magnitude versus Offset (MVO) in a Scaled Marine Environment. Journal of Nanoscience and Nanotechnology, 2012, 12, 8100-8109.	0.9	9
84	Encapsulation of Ni _{0.8} Zn _{0.2} Fe ₂ O ₄ Single Crystals in Multiwall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 8116-8122.	0.9	4
85	The life and death of carbon nanotubes. RSC Advances, 2012, 2, 2909.	1.7	20
86	Nitrogen-Induced Catalyst Restructuring for Epitaxial Growth of Multiwalled Carbon Nanotubes. ACS Nano, 2012, 6, 7723-7730.	7.3	30
87	Patterning of carbon nanotube structures by inkjet printing of catalyst. Journal of Materials Science, 2012, 47, 5760-5765.	1.7	9
88	Surface modification of directly spun carbon nanotube films. Materials Letters, 2012, 79, 32-34.	1.3	13
89	Top-Down Process Based on Electrospinning, Twisting, and Heating for Producing One-Dimensional Carbon Nanotube Assembly. ACS Applied Materials & Earbon Nanotube Assembly. ACS Applied Materials & Earbon Nanotube Assembly.	4.0	45
90	Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment. ACS Nano, 2011, 5, 9339-9344.	7.3	146

#	Article	IF	Citations
91	Shear-induced anisotropy of concentrated multiwalled carbon nanotube suspensions using x-ray scattering. Journal of Rheology, 2011, 55, 1033-1058.	1.3	19
92	First ancient bovine DNA evidence from India: difficult but not impossible. Journal of Archaeological Science, 2011, 38, 2200-2206.	1.2	4
93	Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film. Beilstein Journal of Nanotechnology, 2011, 2, 311-317.	1.5	14
94	Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Materials Letters, 2011, 65, 2299-2303.	1.3	41
95	Aligned carbon nanotube-polystyrene composites prepared by in situ polymerisation of stacked layers. Composites Science and Technology, 2011, 71, 1606-1611.	3.8	23
96	Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials, 2011, 32, 7677-7686.	5.7	67
97	Synthesis and characterizations of Ni0.8Zn0.2Fe2O4-MWCNTs composites for their application in sea bed logging. Ceramics International, 2011, 37, 3237-3245.	2.3	45
98	Continuous Direct Spinning of Fibers of Singleâ€Walled Carbon Nanotubes with Metallic Chirality. Advanced Materials, 2011, 23, 5064-5068.	11.1	136
99	Morphology and Magnetic Characterisation of Aluminium Substituted Yttrium-Iron Garnet Nanoparticles Prepared Using Sol Gel Technique. Journal of Nanoscience and Nanotechnology, 2011, 11, 2652-2656.	0.9	10
100	Synthesis of Carbon Nanostructures by CVD Method. Advanced Structured Materials, 2010, , 23-49.	0.3	47
101	Carbon Nanotubes with Catalyst Controlled Chiral Angle. Chemistry of Materials, 2010, 22, 4904-4911.	3.2	61
102	Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polymer Degradation and Stability, 2010, 95, 870-879.	2.7	97
103	Symmetrical and unsymmetrical <i>α</i> , <i>Ï%</i> -nucleobase amide-conjugated systems. Beilstein Journal of Organic Chemistry, 2010, 6, 34.	1.3	5
104	Ammonia Synthesis. Advanced Structured Materials, 2010, , 395-413.	0.3	5
105	Carbon Nanotubes: The Minuscule Wizards. Advanced Structured Materials, 2010, , 1-22.	0.3	2
106	Processing of Natural Fibers Nanocomposites Using Ionic Liquids. ECS Transactions, 2009, 16, 119-127.	0.3	8
107	Imaging carbon nanoparticles and related cytotoxicity. Journal of Physics: Conference Series, 2009, 151, 012030.	0.3	18
108	Lengthâ€Dependent Mechanics of Carbonâ€Nanotube Networks. Advanced Materials, 2009, 21, 874-878.	11.1	58

#	Article	IF	Citations
109	Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials, 2009, 30, 4152-4160.	5.7	189
110	Structural studies on carbon nanotube fibres by synchrotron radiation microdiffraction and microfluorescence. Journal of Applied Crystallography, 2009, 42, 1122-1128.	1.9	28
111	Electromagnetic characterization of carbon nanotube films by a two-point evanescent microwave method. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1539-1544.	1.3	5
112	Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer, 2009, 50, 4577-4583.	1.8	116
113	Orientation dynamics in multiwalled carbon nanotube dispersions under shear flow. Journal of Chemical Physics, 2009, 130, 214903.	1.2	57
114	Electromagnetic Characterization of Carbon Nanotube Films Subject to an Oxidative Treatment at Elevated Temperature. Journal of Nanoscience and Nanotechnology, 2009, 9, 4543-4553.	0.9	2
115	Scattering of Terahertz Radiation from Oriented Carbon Nanotube Films. , 2009, , .		0
116	Direct spinning of carbon nanotube fibres from liquid feedstock. International Journal of Material Forming, 2008, 1, 59-62.	0.9	40
117	Macroscopic Fibers of Wellâ€Aligned Carbon Nanotubes by Wet Spinning. Small, 2008, 4, 1217-1222.	5.2	157
118	Shear Induced Alignment of Multi-Walled Carbon Nanotube Dispersions via Small Angle X-Ray Scattering. AIP Conference Proceedings, 2008, , .	0.3	2
119	High-Performance Carbon Nanotube Fiber. Science, 2007, 318, 1892-1895.	6.0	934
120	Three-dimensional carbon nanowall structures. Applied Physics Letters, 2007, 90, 123107.	1.5	92
121	Continuous Spinning of Carbon Nanotube Fibers : Structure Control and Properties. Journal of Fiber Science and Technology, 2007, 63, P.361-P.364.	0.0	0
122	Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. Journal of Rheology, 2006, 50, 599-610.	1.3	149
123	Four-Dimensional Spectral Tomography of Carbonaceous Nanocomposites. Nano Letters, 2006, 6, 376-379.	4.5	117
124	Nitrogen in highly crystalline carbon nanotubes. Journal of Physics: Conference Series, 2006, 26, 199-202.	0.3	2
125	Crystallographic Order in Multi-Walled Carbon Nanotubes Synthesized in the Presence of Nitrogen. Small, 2006, 2, 774-784.	5.2	44
126	Electron Holography of Ferromagnetic Nanoparticles Encapsulated in Three-Dimensional Arrays of Aligned Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2006, 962, 1.	0.1	1

#	Article	IF	Citations
127	Three-Dimensional Internal Order in Multiwalled Carbon Nanotubes Grown by Chemical Vapor Deposition. Advanced Materials, 2005, 17, 760-763.	11.1	58
128	Stress enhanced gold dispersion by solvent induced crystallization in BPA-PC membranes. Polymer, 2004, 45, 1525-1532.	1.8	3
129	Dispersion of Gold in Polycarbonate by Vapor-Induced Crystallization. Macromolecules, 2004, 37, 2182-2185.	2.2	18
130	Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation. Applied Physics Letters, 2004, 84, 269-271.	1.5	79
131	Towards the production of large-scale aligned carbon nanotubes. Chemical Physics Letters, 2003, 372, 860-865.	1.2	114
132	Polystyrene grafted multi-walled carbon nanotubes. Chemical Communications, 2002, , 2074-2075.	2.2	187
133	Synthesis and Characterization of Single Crystals Y ₃ Fe ₅ O ₁₂ and Bi ₃ Fe ₅ O ₁₂ Prepared via Sol Gel Technique, Defect and Diffusion Forum, 0, 283-286, 406-412.	0.4	7
134	New Approach to Ammonia Synthesis by Catalysis in Magnetic Field. Journal of Nano Research, 0, 16, 119-130.	0.8	10
135	Synthesis and Characterization of Mesoporous Multi-Walled Carbon Nanotubes at Low Frequencies Electromagnetic Waves. Journal of Nano Research, 0, 26, 117-122.	0.8	2