Eirik Bratland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395911/publications.pdf

Version: 2024-02-01

567281 40 987 15 citations h-index papers

30 g-index 40 40 40 1284 docs citations times ranked citing authors all docs

454955

#	Article	IF	CITATIONS
1	Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity, 2015, 42, 1185-1196.	14.3	246
2	A Longitudinal Follow-up of Autoimmune Polyendocrine Syndrome Type 1. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2975-2983.	3.6	112
3	Radioimmunoassay for autoantibodies against interferon omega; its use in the diagnosis of autoimmune polyendocrine syndrome type I. Clinical Immunology, 2008, 129, 163-169.	3.2	75
4	Cellular immunity and immunopathology in autoimmune Addison's disease. Molecular and Cellular Endocrinology, 2011, 336, 180-190.	3.2	50
5	Autoimmune Addison's disease–ÂAn update on pathogenesis. Annales D'Endocrinologie, 2018, 79, 157-163.	1.4	47
6	T Cell Responses to Steroid Cytochrome P450 21-Hydroxylase in Patients with Autoimmune Primary Adrenal Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5117-5124.	3.6	44
7	High Frequency of Cytolytic 21-Hydroxylase–Specific CD8+ T Cells in Autoimmune Addison's Disease Patients. Journal of Immunology, 2014, 193, 2118-2126.	0.8	38
8	GWAS for autoimmune Addison's disease identifies multiple risk loci and highlights AIRE in disease susceptibility. Nature Communications, 2021, 12, 959.	12.8	33
9	The Substrate-Binding Domain of 21-Hydroxylase, the Main Autoantigen in Autoimmune Addison's Disease, Is an Immunodominant T Cell Epitope. Endocrinology, 2006, 147, 2411-2416.	2.8	24
10	Hypomagnesemia and functional hypoparathyroidism due to novel mutations in the Mg-channel TRPM6. Endocrine Connections, 2015, 4, 215-222.	1.9	23
11	Altered DNA methylation profile in Norwegian patients with Autoimmune Addison's Disease. Molecular Immunology, 2014, 59, 208-216.	2.2	21
12	Longitudinal cohort study of serum antibody responses towards Giardia lamblia variant-specific surface proteins in a non-endemic area. Experimental Parasitology, 2018, 191, 66-72.	1.2	21
13	Sequential bortezomib and temozolomide treatment promotes immunological responses in glioblastoma patients with positive clinical outcomes: A phase 1B study. Immunity, Inflammation and Disease, 2020, 8, 342-359.	2.7	19
14	Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83.	3.2	18
15	Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. Journal of Experimental Medicine, 2021, 218, .	8.5	18
16	Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines. Journal of Interferon and Cytokine Research, 2015, 35, 759-770.	1.2	17
17	Increased infiltration and tolerised antigen-specific CD8+ TEM cells in tumor but not peripheral blood have no impact on survival of HCMV+ glioblastoma patients. Oncolmmunology, 2017, 6, e1336272.	4.6	17
18	The natural history of 21-hydroxylase autoantibodies in autoimmune Addison's disease. European Journal of Endocrinology, 2021, 184, 607-615.	3.7	17

#	Article	IF	CITATIONS
19	A novel cell-based assay for measuring neutralizing autoantibodies against type I interferons in patients with autoimmune polyendocrine syndrome type 1. Clinical Immunology, 2014, 153, 220-227.	3.2	16
20	Anticommensal Responses Are Associated with Regulatory T Cell Defect in Autoimmune Polyendocrinopathy–Candidiasis–Ectodermal Dystrophy Patients. Journal of Immunology, 2016, 196, 2955-2964.	0.8	15
21	Altered Immune Activation and IL-23 Signaling in Response to Candida albicans in Autoimmune Polyendocrine Syndrome Type 1. Frontiers in Immunology, 2017, 8, 1074.	4.8	12
22	Potential Transcriptional Biomarkers to Guide Glucocorticoid Replacement in Autoimmune Addison's Disease. Journal of the Endocrine Society, 2021, 5, bvaa202.	0.2	11
23	Functional studies of novel CYP21A2 mutations detected in Norwegian patients with congenital adrenal hyperplasia. Endocrine Connections, 2014, 3, 67-74.	1.9	10
24	The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease. Clinical and Experimental Immunology, 2014, 176, 351-362.	2.6	10
25	The potential role for infections in the pathogenesis of autoimmune Addison's disease. Clinical and Experimental Immunology, 2018, 195, 52-63.	2.6	10
26	Autoantibodies against aromatic amino acid hydroxylases in patients with autoimmune polyendocrine syndrome type 1 target multiple antigenic determinants and reveal regulatory regions crucial for enzymatic activity. Immunobiology, 2013, 218, 899-909.	1.9	9
27	CYP21A2 polymorphisms in patients with autoimmune Addison's disease, and linkage disequilibrium to HLA risk alleles. European Journal of Endocrinology, 2014, 171, 743-750.	3.7	9
28	Interleukin-2 and subunit alpha of its soluble receptor in autoimmune Addison's disease – An association study and expression analysis. Autoimmunity, 2015, 48, 100-107.	2.6	9
29	The purification and application of biologically active recombinant steroid cytochrome P450 21-hydroxylase: The major autoantigen in autoimmune Addison's disease. Journal of Autoimmunity, 2009, 33, 58-67.	6.5	8
30	Biâ€allelic <i>KARS1</i> pathogenic variants affecting functions of cytosolic and mitochondrial isoforms are associated with a progressive and multisystem disease. Human Mutation, 2021, 42, 745-761.	2.5	7
31	Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. Journal of Translational Autoimmunity, 2019, 1, 100005.	4.0	5
32	The SH3PXD2A-HTRA1 fusion transcript is extremely rare in Norwegian sporadic vestibular schwannoma patients. Journal of Neuro-Oncology, 2021, 154, 35-40.	2.9	4
33	Transcriptional Changes in Regulatory T Cells From Patients With Autoimmune Polyendocrine Syndrome Type 1 Suggest Functional Impairment of Lipid Metabolism and Gut Homing. Frontiers in Immunology, 2021, 12, 722860.	4.8	3
34	Truncating and zincâ€finger variants in <scp> <i>GLI2</i> </scp> are associated with hypopituitarism. American Journal of Medical Genetics, Part A, 2022, 188, 1065-1074.	1.2	3
35	Coexistence of Congenital Adrenal Hyperplasia and Autoimmune Addison's Disease. Frontiers in Endocrinology, 2019, 10, 648.	3.5	2
36	21-Hydroxylase-Specific CD8+ T Cells in Autoimmune Addison's Disease Are Restricted by HLA-A2 and HLA-C7 Molecules. Frontiers in Immunology, 2021, 12, 742848.	4.8	2

3

#	Article	IF	CITATIONS
37	Epitope mapping of human aromatic l-amino acid decarboxylase. Biochemical and Biophysical Research Communications, 2007, 353, 692-698.	2.1	1
38	Analysis of cellular and humoral immune responses against cytomegalovirus in patients with autoimmune Addison's disease. Journal of Translational Medicine, 2016, 14, 68.	4.4	1
39	Genome-Wide Association Study Links Autoimmune Addison's Disease to Break of Central Tolerance. Journal of the Endocrine Society, 2021, 5, A167-A168.	0.2	O
40	Gene Expression to Guide Glucocorticoid Replacement in Autoimmune Addison's Disease. Journal of the Endocrine Society, 2021, 5, A83-A83.	0.2	0