Shaojun Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processivity and Enzymatic Mode of a Glycoside Hydrolase Family 5 Endoglucanase from Volvariella volvacea. Applied and Environmental Microbiology, 2013, 79, 989-996.	1.4	66
2	Efficient enzymatic degradation of poly (É›-caprolactone) by an engineered bifunctional lipase-cutinase. Polymer Degradation and Stability, 2019, 160, 120-125.	2.7	63
3	An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives. Applied Microbiology and Biotechnology, 2015, 99, 5071-5081.	1.7	46
4	Engineering the Expression and Characterization of Two Novel Laccase Isoenzymes from Coprinus comatus in Pichia pastoris by Fusing an Additional Ten Amino Acids Tag at N-Terminus. PLoS ONE, 2014, 9, e93912.	1.1	45
5	Comprehensive evaluation of combining hydrothermal pretreatment (autohydrolysis) with enzymatic hydrolysis for efficient release of monosaccharides and ferulic acid from corn bran. Industrial Crops and Products, 2018, 113, 348-357.	2.5	39
6	Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith. Bioresource Technology, 2016, 207, 1-10.	4.8	32
7	Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Bioprocess and Biosystems Engineering, 2018, 41, 593-601.	1.7	30
8	Cloning of multiple cellulase cDNAs fromVolvariella volvaceaand their differential expression during substrate colonization and fruiting. FEMS Microbiology Letters, 2006, 263, 207-213.	0.7	29
9	Characterization of a thermo-alkali-stable laccase from <i>Bacillus subtilis</i> cjp3 and its application in dyes decolorization. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 710-717.	0.9	28
10	Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Molecular Biology Reports, 2013, 40, 1927-1936.	1.0	27
11	Bioproduction of High-Concentration 4-Vinylguaiacol Using Whole-Cell Catalysis Harboring an Organic Solvent-Tolerant Phenolic Acid Decarboxylase From Bacillus atrophaeus. Frontiers in Microbiology, 2019, 10, 1798.	1.5	22
12	Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroom <i>Volvariella volvacea</i> . FEMS Microbiology Letters, 2007, 274, 304-310.	0.7	21
13	Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience, 2010, 51, 68-74.	0.3	20
14	A novel neutral xylanase with high SDS resistance from <i>Volvariella volvacea</i> : characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1083-1093.	1.4	20
15	Decolorization of Synthetic Dyes by Crude and Purified Laccases from Coprinus comatus Grown Under Different Cultures: The Role of Major Isoenzyme in Dyes Decolorization. Applied Biochemistry and Biotechnology, 2013, 169, 660-672.	1.4	20
16	The chitinase C gene PsChiC from Pseudomonas sp. and its synergistic effects on larvicidal activity. Genetics and Molecular Biology, 2015, 38, 366-372.	0.6	20
17	High cellâ€density cultivation of phenolic acid decarboxylaseâ€expressing <i>Escherichia coli</i> and 4â€vinylguaiacol bioproduction from ferulic acid by wholeâ€cell catalysis. Journal of Chemical Technology and Biotechnology, 2018, 93, 2415-2421.	1.6	20
18	Production of lactobionic acid using an immobilized cellobiose dehydrogenase/laccase system on magnetic chitosan spheres. Process Biochemistry, 2021, 100, 1-9.	1.8	20

Shaojun Ding

#	Article	IF	CITATIONS
19	Comparison of C4-oxidizing and C1/C4-oxidizing AA9 LPMOs in substrate adsorption, H2O2-driven activity and synergy with cellulase on celluloses of different crystallinity. Carbohydrate Polymers, 2021, 269, 118305.	5.1	20
20	Molecular cloning and transcriptional expression analysis of an intracellular β-glucosidase, a family 3 glycosyl hydrolase, from the edible straw mushroom,Volvariella volvacea. FEMS Microbiology Letters, 2007, 267, 221-229.	0.7	19
21	N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance. Applied Microbiology and Biotechnology, 2016, 100, 3555-3565.	1.7	19
22	Cellobiose dehydrogenase from Volvariella volvacea and its effect on the saccharification of cellulose. Process Biochemistry, 2017, 60, 52-58.	1.8	19
23	Characterization of a cutinase from Myceliophthora thermophila and its application in polyester hydrolysis and deinking process. Process Biochemistry, 2018, 66, 106-112.	1.8	17
24	Direct Affinity-Immobilized Phenolic Acid Decarboxylase by a Linker Peptide on Zeolite for Efficient Bioconversion of Ferulic Acid into 4-Vinylguaiacol. ACS Sustainable Chemistry and Engineering, 2020, 8, 14732-14742.	3.2	17
25	Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnology, 2016, 16, 73.	1.7	16
26	Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides. Applied Biochemistry and Biotechnology, 2018, 186, 816-833.	1.4	16
27	A combined approach for improving alkaline acetyl xylan esterase production in Pichia pastoris, and effects of glycosylation on enzyme secretion, activity and stability. Protein Expression and Purification, 2012, 85, 44-50.	0.6	15
28	Characterization and functional analysis of two novel thermotolerant α-l-arabinofuranosidases belonging to glycoside hydrolase family 51 from Thielavia terrestris and family 62 from Eupenicillium parvum. Applied Microbiology and Biotechnology, 2020, 104, 8719-8733.	1.7	15
29	Comparative characterization of a recombinant Volvariella volvacea endoglucanase I (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics. Journal of Biotechnology, 2007, 130, 364-369.	1.9	14
30	Biochemical characteristics of an alkaline pectate lyase PelA from Volvariella volvacea: roles of the highly conserved N-glycosylation site in its secretion and activity. Applied Microbiology and Biotechnology, 2015, 99, 3447-3458.	1.7	14
31	Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran. Applied Microbiology and Biotechnology, 2019, 103, 3037-3048.	1.7	14
32	Highly Efficient Extraction of Ferulic Acid from Cereal Brans by a New Type A Feruloyl Esterase from Eupenicillium parvum in Combination with Dilute Phosphoric Acid Pretreatment. Applied Biochemistry and Biotechnology, 2020, 190, 1561-1578.	1.4	14
33	Alkaline organosolv pretreatment of different sorghum stem parts for enhancing the total reducing sugar yields and p-coumaric acid release. Biotechnology for Biofuels, 2020, 13, 106.	6.2	14
34	Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme and Microbial Technology, 2016, 91, 42-51.	1.6	12
35	The Enzymatic Deinking of Waste Papers by Engineered Bifunctional Chimeric Neutral Lipase – Endoglucanase. BioResources, 2017, 12,	0.5	12
36	A highly xyloglucan active lytic polysaccharide monooxygenase EpLPMO9A from Eupenicillium parvum 4-14 shows boosting effect on hydrolysis of complex lignocellulosic substrates. International Journal of Biological Macromolecules, 2021, 167, 202-213.	3.6	11

Shaojun Ding

#	Article	IF	CITATIONS
37	Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom <i>Volvariella volvacea</i> with both de- <i>O</i> -acetylation and de- <i>N</i> -acetylation activity. FEMS Microbiology Letters, 2009, 295, 50-56.	0.7	10
38	Characterization of a d-lyxose isomerase from Bacillus velezensis and its application for the production of d-mannose and l-ribose. AMB Express, 2019, 9, 149.	1.4	10
39	Expression and Characterization of Carotenoid Cleavage Oxygenases From Herbaspirillum seropedicae and Rhodobacteraceae bacterium Capable of Biotransforming Isoeugenol and 4-Vinylguaiacol to Vanillin. Frontiers in Microbiology, 2019, 10, 1869.	1.5	9
40	Highly efficient transformation of a (hemi-)cellulases-producing fungus Eupenicillium parvum 4–14 by Agrobacterium tumefaciens. Journal of Microbiological Methods, 2018, 146, 40-45.	0.7	8
41	Altering the linker in processive GH5 endoglucanase 1 modulates lignin binding and catalytic properties. Biotechnology for Biofuels, 2018, 11, 332.	6.2	8
42	Two C1-oxidizing lytic polysaccharide monooxygenases from Ceriporiopsis subvermispora enhance the saccharification of wheat straw by a commercial cellulase cocktail. Process Biochemistry, 2021, 110, 243-250.	1.8	8
43	Two C1-oxidizing AA9 lytic polysaccharide monooxygenases from Sordaria brevicollis differ in thermostability, activity, and synergy with cellulase. Applied Microbiology and Biotechnology, 2021, 105, 8739-8759.	1.7	7
44	Comparison of endoglucanase-1 (EG1) induction in the edible straw mushroom Volvariella volvacea by lactose and/or cellobiose with or without added sorbose. Applied Microbiology and Biotechnology, 2011, 89, 1939-1946.	1.7	6
45	Expression and characterization of a 9-cis-epoxycarotenoid dioxygenase from Serratia sp. ATCC 39006 capable of biotransforming isoeugenol and 4-vinylguaiacol to vanillin. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00253.	2.1	6
46	Functional characterization of a GH62 family α-L-arabinofuranosidase from Eupenicillium parvum suitable for monosaccharification of corncob arabinoxylan in combination with key enzymes. Enzyme and Microbial Technology, 2022, 154, 109965.	1.6	6
47	Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives. Catalysts, 2019, 9, 634.	1.6	5
48	Impacts of cotton linter pulp characteristics on the processivity of glycoside hydrolase family 5 endoglucanase from Volvariella Volvacea. Cellulose, 2021, 28, 1947-1959.	2.4	4
49	Comparison of the Biochemical Properties and Roles in the Xyloglucan-Rich Biomass Degradation of a GH74 Xyloglucanase and Its CBM-Deleted Variant from Thielavia terrestris. International Journal of Molecular Sciences, 2022, 23, 5276.	1.8	4
50	Characterization of an L-Arabinose Isomerase from Bacillus velezensis and Its Application for L-Ribulose and L-Ribose Biosynthesis. Applied Biochemistry and Biotechnology, 2020, 192, 935-951.	1.4	2
51	Heterologous synthesis of 4-ethylphenol in engineered Escherichia coli. Process Biochemistry, 2020, 96, 157-164.	1.8	2
52	Unique Lysine-Rich Sequence on the CYT Domain of <i>Af</i> CDH Enhances Its Interdomain Electron Transfer and Activation of AA9 LPMOs. ACS Sustainable Chemistry and Engineering, 2022, 10, 5810-5824.	3.2	2
53	Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and Activity. Journal of Microbiology and Biotechnology, 2017, 27, 775-784.	0.9	1
54	Functional characterization of a new 3-dehydroshikimate dehydratase from <i>Eupenicillium parvum</i> and its potential for protocatechuic acid production. Bioscience, Biotechnology and Biochemistry, 0, , .	0.6	1