
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gagâ€like proteins: Novel mediators of prenatal alcohol exposure in neural development. Alcoholism: Clinical and Experimental Research, 2022, 46, 556-569.	1.4	6
2	Prenatal opioid-exposed infant extracellular miRNA signature obtained at birth predicts severity of neonatal opioid withdrawal syndrome. Scientific Reports, 2022, 12, 5941.	1.6	6
3	Prenatal alcohol exposure contributes to negative pregnancy outcomes by altering fetal vascular dynamics and the placental transcriptome. Alcoholism: Clinical and Experimental Research, 2022, 46, 1036-1049.	1.4	9
4	A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicology and Teratology, 2021, 83, 106943.	1.2	8
5	Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. , 2021, 12, 1516.		8
6	Infant circulating MicroRNAs as biomarkers of effect in fetal alcohol spectrum disorders. Scientific Reports, 2021, 11, 1429.	1.6	28
7	Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. IScience, 2021, 24, 102439.	1.9	20
8	Divergent and overlapping hippocampal and cerebellar transcriptome responses following developmental ethanol exposure during the secondary neurogenic period. Alcoholism: Clinical and Experimental Research, 2021, 45, 1408-1423.	1.4	9
9	Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. International Journal of Molecular Sciences, 2021, 22, 8785.	1.8	13
10	Prenatal alcohol-induced sex differences in immune, metabolic and neurobehavioral outcomes in adult rats. Brain, Behavior, and Immunity, 2021, 98, 86-100.	2.0	21
11	Hemorrhage and Locomotor Deficits Induced by Pain Input after Spinal Cord Injury Are Partially Mediated by Changes in Hemodynamics. Journal of Neurotrauma, 2021, 38, 3406-3430.	1.7	6
12	Association between fetal sex and maternal plasma microRNA responses to prenatal alcohol exposure: evidence from a birth outcome-stratified cohort. Biology of Sex Differences, 2020, 11, 51.	1.8	11
13	Dose-response analysis of microvasculature changes in the murine fetal brain and the maternal extremities due to prenatal ethanol exposure. Journal of Biomedical Optics, 2020, 25, .	1.4	13
14	Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine. Biomedical Optics Express, 2020, 11, 3618.	1.5	5
15	Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Research, 2019, 111, 1308-1319.	0.8	14
16	Toxicant and teratogenic effects of prenatal alcohol. Current Opinion in Toxicology, 2019, 14, 29-34.	2.6	8
17	Ethanol Exposure Increases miRâ€140 in Extracellular Vesicles: Implications for Fetal Neural Stem Cell Proliferation and Maturation. Alcoholism: Clinical and Experimental Research, 2019, 43, 1414-1426.	1.4	47
18	Assessing the acute effects of prenatal synthetic cannabinoid exposure on murine fetal brain vasculature using optical coherence tomography. Journal of Biophotonics, 2019, 12, e201900050.	1.1	11

#	Article	IF	CITATIONS
19	Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Experimental Neurology, 2019, 311, 115-124.	2.0	26
20	Maternal circulating miRNAs that predict infant FASD outcomes influence placental maturation. Life Science Alliance, 2019, 2, e201800252.	1.3	31
21	Evaluating the effects of maternal alcohol consumption on murine fetal brain vasculature using optical coherence tomography. Journal of Biophotonics, 2018, 11, e201700238.	1.1	19
22	Challenges of diagnosing fetal alcohol spectrum disorders in foster and adopted children. Alcohol, 2018, 67, 37-43.	0.8	18
23	Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes. PLoS ONE, 2018, 13, e0199029.	1.1	28
24	Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. Progress in Molecular Biology and Translational Science, 2018, 157, 299-342.	0.9	14
25	Noncoding RNA Regulatory Networks, Epigenetics, andÂProgramming StemÂCellÂRenewal andÂDifferentiation. , 2018, , 903-933.		2
26	In utero Optical Coherence Tomography to Evaluate Vasculature Changes in the Murine Embryonic Brain Due to Prenatal Alcohol and Nicotine exposure. , 2018, , .		0
27	Prenatal Exposure to Alcohol Induces Functional and Structural Plasticity in Dopamine D1 Receptorâ€Expressing Neurons of the Dorsomedial Striatum. Alcoholism: Clinical and Experimental Research, 2018, 42, 1493-1502.	1.4	25
28	The BAF (BRG1/BRM-Associated Factor) chromatin-remodeling complex exhibits ethanol sensitivity in fetal neural progenitor cells and regulates transcription at the miR-9-2 encoding gene locus. Alcohol, 2017, 60, 149-158.	0.8	17
29	Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure. Alcohol, 2017, 60, 159-167.	0.8	28
30	Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol, 2017, 60, 1-6.	0.8	30
31	Prevalence of Prenatal Alcohol Exposure in the State of Texas as Assessed by Phosphatidylethanol in Newborn Dried Blood Spot Specimens. Alcoholism: Clinical and Experimental Research, 2017, 41, 1004-1011.	1.4	59
32	Fetal Alcohol Exposure Alters Blood Flow and Neurological Responses to Transient Cerebral Ischemia in Adult Mice. Alcoholism: Clinical and Experimental Research, 2017, 41, 117-127.	1.4	25
33	When Pain Hurts: Nociceptive Stimulation Induces a State of Maladaptive Plasticity and Impairs Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1873-1890.	1.7	33
34	Evaluating changes in brain vasculature of murine embryos in utero due to maternal alcohol consumption using optical coherence tomography. , 2017, , .		1
35	Alcohol-Induced Developmental Origins of Adult-Onset Diseases. Alcoholism: Clinical and Experimental Research, 2016, 40, 1403-1414.	1.4	50
36	Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure. PLoS ONE, 2016, 11, e0165081.	1.1	63

#	Article	IF	CITATIONS
37	Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics and Chromatin, 2015, 8, 39.	1.8	74
38	Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics, 2015, 10, 142-152.	1.3	57
39	Alcohol Regulates Genes that Are Associated with Response to Endocrine Therapy and Attenuates the Actions of Tamoxifen in Breast Cancer Cells. PLoS ONE, 2015, 10, e0145061.	1.1	13
40	Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Frontiers in Neural Circuits, 2014, 8, 100.	1.4	49
41	Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clinical Science, 2014, 127, 77-89.	1.8	90
42	MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells. Biology Open, 2014, 3, 741-758.	0.6	49
43	Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain. Proceedings of SPIE, 2014, , .	0.8	0
44	Maternal and Neonatal Plasma Micro <scp>RNA</scp> Biomarkers for Fetal Alcohol Exposure in an Ovine Model. Alcoholism: Clinical and Experimental Research, 2014, 38, 1390-1400.	1.4	54
45	MicroRNAs in Alcohol Abuse and Toxicity. , 2014, , 497-521.		1
46	MicroRNAs and Ethanol Toxicity. International Review of Neurobiology, 2014, 115, 245-284.	0.9	28
47	Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: Role of tumor necrosis factor alpha and apoptosis. Pain, 2014, 155, 2344-2359.	2.0	57
48	The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine. Neurochemistry International, 2014, 77, 40-49.	1.9	17
49	Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion. Frontiers in Neural Circuits, 2014, 8, 117.	1.4	15
50	Alcohol-Induced Epigenetic Alterations to Developmentally Crucial Genes Regulating Neural Stemness and Differentiation. Alcoholism: Clinical and Experimental Research, 2013, 37, 1111-1122.	1.4	66
51	Suppression and Epigenetic Regulation of Mi <scp>R</scp> â€9 Contributes to Ethanol Teratology: Evidence from Zebrafish and Murine Fetal Neural Stem Cell Models. Alcoholism: Clinical and Experimental Research, 2013, 37, 1657-1667.	1.4	57
52	Identification of cell-specific patterns of reference gene stability in quantitative reverse-transcriptase polymerase chain reaction studies of embryonic, placental and neural stem models of prenatal ethanol exposure. Alcohol, 2013, 47, 109-120.	0.8	20
53	Effect of alcohol exposure on fetal brain development. , 2013, , .		0
54	Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging. Journal of Biomedical Optics, 2013, 18, 020506.	1.4	21

#	Article	IF	CITATIONS
55	CD24 Expression Identifies Teratogen-Sensitive Fetal Neural Stem Cell Subpopulations: Evidence from Developmental Ethanol Exposure and Orthotopic Cell Transfer Models. PLoS ONE, 2013, 8, e69560.	1.1	20
56	Dysregulation of microRNA expression and function contributes to the etiology of fetal alcohol spectrum disorders. , 2013, 35, 18-24.		23
57	Opposing Actions of Ethanol and Nicotine on Micro <scp>RNA</scp> s are Mediated by Nicotinic Acetylcholine Receptors in Fetal Cerebral Cortical–Derived Neural Progenitor Cells. Alcoholism: Clinical and Experimental Research, 2012, 36, 1669-1677.	1.4	74
58	Non-Coding RNA Regulatory Networks, Epigenetics, and Programming Stem Cell Renewal and Differentiation. , 2012, , 503-518.		0
59	MicroRNAs and Fetal Brain Development: Implications for Ethanol Teratology during the Second Trimester Period of Neurogenesis. Frontiers in Genetics, 2012, 3, 77.	1.1	62
60	Ethanol Exposure During Pregnancy Persistently Attenuates Cranially Directed Blood Flow in the Developing Fetus: Evidence from Ultrasound Imaging in a Murine Second Trimester Equivalent Model. Alcoholism: Clinical and Experimental Research, 2012, 36, 748-758.	1.4	55
61	An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model. PLoS ONE, 2012, 7, e32662.	1.1	212
62	MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience, 2011, 186, 146-160.	1.1	128
63	Commentary: Will Analyzing the Epigenome Yield Cohesive Principles of Ethanol Teratology?. Alcoholism: Clinical and Experimental Research, 2011, 35, 1201-1203.	1.4	4
64	MicroRNAs: Master Regulators of Ethanol Abuse and Toxicity?. Alcoholism: Clinical and Experimental Research, 2010, 34, 575-587.	1.4	161
65	Group I Metabotropic Glutamate Receptors Control Metaplasticity of Spinal Cord Learning through a Protein Kinase C-Dependent Mechanism. Journal of Neuroscience, 2008, 28, 11939-11949.	1.7	43
66	Modeling the Impact of Alcohol on Cortical Development in a Dish: Strategies from Mapping Neural Stem Cell Fate. Methods in Molecular Biology, 2008, 447, 151-168.	0.4	26
67	Ethanol exposure during neurogenesis induces persistent effects on neural maturation: evidence from an ex vivo model of fetal cerebral cortical neuroepithelial progenitor maturation. Gene Expression, 2008, 14, 159-71.	0.5	64
68	Competing Interactions between Micro-RNAs Determine Neural Progenitor Survival and Proliferation after Ethanol Exposure: Evidence from an <i>Ex Vivo</i> Model of the Fetal Cerebral Cortical Neuroepithelium. Journal of Neuroscience, 2007, 27, 8546-8557.	1.7	273
69	Ethanol Regulates Angiogenic Cytokines During Neural Development: Evidence From an in Vitro Model of Mitogen-Withdrawal?Induced Cerebral Cortical Neuroepithelial Differentiation. Alcoholism: Clinical and Experimental Research, 2007, 31, 324-335.	1.4	29
70	Embryonic Cerebral Cortical Progenitors Are Resistant to Apoptosis, but Increase Expression of Suicide Receptor DISC-Complex Genes and Suppress Autophagy Following Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2007, 31, 070227012339002-???.	1.4	53
71	Instrumental Learning Within the Spinal Cord: Underlying Mechanisms and Implications for Recovery After Injury. Behavioral and Cognitive Neuroscience Reviews, 2006, 5, 191-239.	3.9	75
72	Use of video microscopy in teaching medical histology labs. FASEB Journal, 2006, 20, A887.	0.2	0

#	Article	IF	CITATIONS
73	Instrumental Learning Within the Rat Spinal Cord: Localization of the Essential Neural Circuit Behavioral Neuroscience, 2005, 119, 538-547.	0.6	34
74	Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors. BMC Neuroscience, 2005, 6, 59.	0.8	91
75	Role ofFolbp1 in the regional regulation of apoptosis and cell proliferation in the developing neural tube and craniofacies. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2005, 135C, 48-58.	0.7	37
76	Uncontrollable Stimulation Undermines Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2004, 21, 1795-1817.	1.7	95
77	The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins. BMC Neuroscience, 2004, 5, 11.	0.8	22
78	Critically timed ethanol exposure reduces GABAAR function on septal neurons developing in vivo but not in vitro. Brain Research, 2004, 1008, 69-80.	1.1	17
79	Developmental consequences of abnormal folate transport during murine heart morphogenesis. Birth Defects Research Part A: Clinical and Molecular Teratology, 2004, 70, 449-458.	1.6	62
80	Ethanol Induces Fas/Apo [Apoptosis]-1 mRNA and Cell Suicide in the Developing Cerebral Cortex. Alcoholism: Clinical and Experimental Research, 2000, 24, 535-543.	1.4	102
81	Glial-derived neurotrophic factor (GDNF) prevents ethanol-induced apoptosis and JUN kinase phosphorylation. Developmental Brain Research, 2000, 119, 209-216.	2.1	101
82	Theiler's murine encephalomyelitis virus induces rapid necrosis and delayed apoptosis in myelinated mouse cerebellar explant cultures. Brain Research, 2000, 868, 259-267.	1.1	15
83	Ethanol Induces Fas/Apo [Apoptosis]-1 mRNA and Cell Suicide in the Developing Cerebral Cortex. Alcoholism: Clinical and Experimental Research, 2000, 24, 535-543.	1.4	5
84	Overlapping and Divergent Actions of Estrogen and the Neurotrophins on Cell Fate and p53-Dependent Signal Transduction in Conditionally Immortalized Cerebral Cortical Neuroblasts. Journal of Neuroscience, 1999, 19, 6994-7006.	1.7	32
85	Fas/Apo [Apoptosis]-1 and Associated Proteins in the Differentiating Cerebral Cortex: Induction of Caspase-Dependent Cell Death and Activation of NF-κB. Journal of Neuroscience, 1999, 19, 1754-1770.	1.7	138
86	Ethanol Decreases Glial Derived Neurotrophic Factor (GDNF) Protein Release but Not mRNA Expression and Increases GDNF-Stimulated Shc Phosphorylation in the Developing Cerebellum. Alcoholism: Clinical and Experimental Research, 1999, 23, 1691-1697.	1.4	35
87	Expression of Brain-Derived Neurotrophic Factor and Its Cognate Receptor, TrkB, in the Rat Suprachiasmatic Nucleus. Experimental Neurology, 1998, 151, 184-193.	2.0	46
88	Hormone replacement: therapeutic strategies in the treatment of Alzheimer's disease and ageing-related cognitive disorders. Expert Opinion on Therapeutic Patents, 1997, 7, 611-629.	2.4	5
89	Glial-derived neurotrophic factor rescues calbindin-D28k-immunoreactive neurons in alcohol-treated cerebellar explant cultures. , 1997, 33, 835-847.		53
90	Chapter 2. Gonadal Steroid Receptors: Possible Roles in the Etiology and Therapy of Cognitive and Neurological Disorders. Annual Reports in Medicinal Chemistry, 1996, 31, 11-20.	0.5	8

#	Article	IF	CITATIONS
91	Nerve growth factor (NCF) regulation of estrogen receptors in explant cultures of the developing forebrain. , 1996, 31, 77-87.		54
92	Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11110-11114.	3.3	501
93	Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. Journal of Neurobiology, 1994, 25, 974-988.	3.7	143
94	Interactions of Estrogen with the Neurotrophins and Their Receptors during Neural Development. Hormones and Behavior, 1994, 28, 367-375.	1.0	104
95	Estrogen Differentially Regulates Estrogen and Nerve Growth Factor Receptor mRNAs in Adult Sensory Neurons. Obstetrical and Gynecological Survey, 1994, 49, 495-497.	0.2	1
96	Presumptive Estrogen Target Neurons Express mRNAs for both the Neurotrophins and Neurotrophin Receptors: A Basis for Potential Developmental Interactions of Estrogen with the Neurotrophins. Molecular and Cellular Neurosciences, 1993, 4, 510-525.	1.0	93
97	Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6439-6443.	3.3	242
98	Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4668-4672.	3.3	429
99	Developmental Expression of Estrogen Receptor mRNA in the Rat Cerebral Cortex: A Nonisotopic in situ Hybridization Histochemistry Study. Cerebral Cortex, 1992, 2, 1-15.	1.6	110
100	Cellular variations in estrogen receptor mRNA translation in the developing brain: evidence from combined [1251]estrogen autoradiography and non-isotopic in situ hybridization histochemistry. Brain Research, 1992, 576, 25-41.	1.1	134
101	Insulin influences astroglial morphology and glial fibrillary acidic protein (GFAP) expression in organotypic cultures. Brain Research, 1991, 558, 296-304.	1.1	54
102	Aging-related changes in brain metabolism are altered by early developmental exposure to diazepam. Neurobiology of Aging, 1990, 11, 117-122.	1.5	7
103	Early developmental exposure to benzodiazepine ligands alters brain31P-NMR spectra in young adult rats. Brain Research, 1990, 506, 85-92.	1.1	9
104	Early developmental exposure to benzodiazepine ligands alters brain levels of thiobarbituric acid-reactive products in young adult rats. Neurochemical Research, 1989, 14, 1119-1127.	1.6	6