Robert M Briber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395253/publications.pdf

Version: 2024-02-01

		76196	88477
138	5,415	40	70
papers	citations	h-index	g-index
139	139	139	5344
137	137	137	2277
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydrate Polymers, 2022, 276, 118736.	5.1	9
2	Remote Chemical Sensing by SERS with Self-Assembly Plasmonic Nanoparticle Arrays on a Fiber. Frontiers in Physics, 2022, 9, .	1.0	2
3	Synergistically Tailoring Mechanical and Optical Properties of Diblock Copolymer Thermoplastic Elastomers via Lanthanide Coordination. Chemistry of Materials, 2022, 34, 1578-1589.	3.2	17
4	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	11.5	113
5	A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology, 2022, 17, 629-636.	15.6	50
6	Oligocellulose from acid hydrolysis: A revisit. Applied Surface Science, 2021, 537, 147783.	3.1	9
7	Effect of Carbon Chain Length, Ionic Strength, and pH on the In Vitro Release Kinetics of Cationic Drugs from Fatty-Acid-Loaded Contact Lenses. Pharmaceutics, 2021, 13, 1060.	2.0	3
8	Cellulose Nanocomposites of Cellulose Nanofibers and Molecular Coils. Journal of Composites Science, 2021, 5, 200.	1.4	2
9	Solvent-Assisted Fractionation of Oligomeric Cellulose and Reversible Transformation of Cellulose II and IV. ACS Biomaterials Science and Engineering, 2021, 7, 4792-4797.	2.6	4
10	Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598, 590-596.	13.7	262
11	Extended delivery of cationic drugs from contact lenses loaded with unsaturated fatty acids. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 155, 1-11.	2.0	12
12	A flexible mesofiber-based fast current collector. Journal of Materials Science, 2020, 55, 11391-11402.	1.7	2
13	Amorphous cellulose thin films. Cellulose, 2020, 27, 2959-2965.	2.4	10
14	Supramolecular luminescent triblock copolymer thermoplastic elastomer via metal-ligand coordination. Polymer Testing, 2019, 78, 105956.	2.3	16
15	Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors. Journal of the American Chemical Society, 2019, 141, 17830-17837.	6.6	42
16	Formation of Drug-Participating Catanionic Aggregates for Extended Delivery of Non-Steroidal Anti-Inflammatory Drugs from Contact Lenses. Biomolecules, 2019, 9, 593.	1.8	9
17	Materials science and engineering graduate core courses in the United States. MRS Bulletin, 2019, 44, 7-9.	1.7	0
18	Molecular partitioning in ternary solutions of cellulose. Carbohydrate Polymers, 2019, 220, 157-162.	5.1	4

#	Article	IF	CITATIONS
19	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	13.3	343
20	A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, eaau4238.	4.7	148
21	Spray-Processed Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elasticity. ACS Applied Materials & Composites with High Conductivity and Elastic with High Conductivity and Elastic with High Conductivity an	4.0	10
22	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	1.1	47
23	Effects of Preferential Counterion Interactions on the Specificity of RNA Folding. Journal of Physical Chemistry Letters, 2018, 9, 5726-5732.	2.1	1
24	Phase Separation and Stack Alignment in Aqueous Cellulose Nanocrystal Suspension under Weak Magnetic Field. Langmuir, 2018, 34, 8042-8051.	1.6	32
25	Entropic stabilization of folded RNA in crowded solutions measured by SAXS. Nucleic Acids Research, 2016, 44, gkw597.	6.5	18
26	Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme. Nucleic Acids Research, 2015, 43, 1170-1176.	6.5	23
27	Superabsorbent Hydrogels That Are Robust and Highly Stretchable. Macromolecules, 2014, 47, 4445-4452.	2.2	181
28	NMR water selfâ€diffusion and relaxation studies on sodium polyacrylate solutions and gels in physiologic ionic solutions. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
29	Influence of organic liquids on the nanostructure of precipitated cellulose. Journal of Applied Polymer Science, 2013, 127, 2620-2627.	1.3	6
30	Self-assembled block copolymer photonic crystal for selective fructose detection. Biosensors and Bioelectronics, 2013, 46, 124-129.	5.3	51
31	Hexagonally ordered nanoparticles templated using a block copolymer film through Coulombic interactions. Nanotechnology, 2013, 24, 045305.	1.3	19
32	Crowders Perturb the Entropy of RNA Energy Landscapes to Favor Folding. Journal of the American Chemical Society, 2013, 135, 10055-10063.	6.6	49
33	Morphotropic Phase Boundaries in Ferromagnets: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Tb</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><td>>2.9 ><:mml:m</td><td>i>⁵³/mml:m</td></mml:mrow></mml:msub></mml:math>	>2.9 ><:mml:m	i> ⁵³ /mml:m
34	Survey reveals interdisciplinarity of MSE faculty. MRS Bulletin, 2012, 37, 541-542.	1.7	1
35	RNA Flexibility and Folding in Crowded Solutions. Biophysical Journal, 2012, 102, 644a.	0.2	0
36	Structure investigation of poly((2-dimethylamino)ethyl methacrylate)/sodium dodecylsulfate complexes in concentrated poly((2-dimethylamino)ethyl methacrylate) solutions using small angle neutron scattering. Polymer, 2012, 53, 2942-2948.	1.8	3

3

#	Article	IF	CITATIONS
37	Cooperative Tertiary Interaction Network Guides RNA Folding. Cell, 2012, 149, 348-357.	13.5	88
38	RNA Folding in Crowded Solutions. Biophysical Journal, 2012, 102, 3a-4a.	0.2	0
39	High-throughput nanostructured SERS substrates by self-assembly. , 2012, , .		0
40	Silicon Patterning Using Selfâ€assembled PSâ€∢i>b⟨li>â€PAA Diblock Copolymer Masks for Black Silicon Fabrication via Plasma Etching. Plasma Processes and Polymers, 2012, 9, 968-974.	1.6	12
41	Using block copolymer self-assembly to imprint the crystallization of polymer dendrites. Soft Matter, 2011, 7, 8969.	1.2	2
42	The Role of Electrostatic Relaxation on the Folding Kinetics of a Bacterial Ribozyme. Biophysical Journal, 2011, 100, 236a.	0.2	0
43	Tertiary Interactions Maintain the Balance of Stability, Folding Efficiency and Speed in a Large Catalytic Bacterial RNA. Biophysical Journal, 2011, 100, 236a.	0.2	0
44	Exploring the Folding Landscape of RNA in Crowded Solutions. Biophysical Journal, 2011, 100, 236a.	0.2	0
45	The Dynamics of Unfolded versus Folded tRNA: The Role of Electrostatic Interactions. Journal of the American Chemical Society, 2011, 133, 16406-16409.	6.6	25
46	Internal magnetic structure of dextran coated magnetite nanoparticles in solution using small angle neutron scattering with polarization analysis. Journal of Applied Physics, 2011, 109, 078513.	1.1	19
47	Color changing block copolymer films for chemical sensing of simple sugars. Biosensors and Bioelectronics, 2011, 28, 349-354.	5. 3	18
48	Poly(2â€vinylnaphthalene) <i>àêblockâ€</i> poly(acrylic acid) Block Copolymer: Selfâ€Assembled Pattern Formation, Alignment, and Transfer into Silicon via Plasma Etching. Macromolecular Chemistry and Physics, 2011, 212, 1735-1741.	1.1	8
49	Selfâ€Assembled SERS Substrates with Tunable Surface Plasmon Resonances. Advanced Functional Materials, 2011, 21, 3424-3429.	7.8	146
50	A simple method for creating nanoporous block-copolymer thin films. Polymer, 2010, 51, 2376-2382.	1.8	26
51	Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute poly((2–dimethylamino)ethyl methacrylate) solutions. Polymer, 2010, 51, 2872-2878.	1.8	4
52	Molecular Crowding Stabilizes Folded RNA Structure by the Excluded Volume Effect. Journal of the American Chemical Society, 2010, 132, 8690-8696.	6.6	178
53	Folding of Bacterial Group I Ribozyme in Crowded Solutions. Biophysical Journal, 2010, 98, 472a.	0.2	0
54	Time-Resolved Multiphase Folding of Bacterial Group I Ribozyme. Biophysical Journal, 2010, 98, 472a.	0.2	0

#	Article	IF	Citations
55	Multistage Collapse of a Bacterial Ribozyme Observed by Time-Resolved Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2010, 132, 10148-10154.	6.6	50
56	Dynamics of Biological Macromolecules: Not a Simple Slaving by Hydration Water. Biophysical Journal, 2010, 98, 1321-1326.	0.2	103
57	Self-organized two-dimensional onions. Applied Physics Letters, 2009, 94, 113507.	1.5	7
58	Silk–elastinlike protein polymer hydrogels: Influence of monomer sequence on physicochemical properties. Polymer, 2009, 50, 366-374.	1.8	69
59	Oxidation effect on templating of metal oxide nanoparticles within block copolymers. Polymer, 2009, 50, 1223-1227.	1.8	3
60	Metal Ion Dependence of Cooperative Collapse Transitions in RNA. Journal of Molecular Biology, 2009, 393, 753-764.	2.0	86
61	Dynamics of tRNA at Different Levels of Hydration. Biophysical Journal, 2009, 96, 2755-2762.	0.2	81
62	Kinetics and Mechanism of RNA Folding studied by SAXS. Biophysical Journal, 2009, 96, 575a.	0.2	3
63	Conformation of Arborescent Polymers in Solution by Small-Angle Neutron Scattering:  Segment Density and Coreâ^'Shell Morphology. Macromolecules, 2008, 41, 175-183.	2.2	21
64	Diblock copolymer based self-assembled nanomagnetoelectric. Applied Physics Letters, 2008, 93, 173507.	1.5	17
65	Environment-Controlled Spin Coating To Rapidly Orient Microdomains in Thin Block Copolymer Films. Macromolecules, 2007, 40, 4102-4105.	2.2	47
66	Dynamic Transition in tRNA is Solvent Induced. Journal of the American Chemical Society, 2006, 128, 32-33.	6.6	105
67	TEM characterization of diblock copolymer templated iron oxide nanoparticles: Bulk solution and thin film surface doping approach. Polymer, 2006, 47, 2018-2022.	1.8	13
68	Dilute-solution structure of charged arborescent graft polymer. Polymer, 2006, 47, 2750-2759.	1.8	11
69	Structural and magnetic characterization of norbornene–deuterated norbornene dicarboxylic acid diblock copolymers doped with iron oxide nanoparticles. Polymer, 2005, 46, 5194-5201.	1.8	21
70	Templating Organosilicate Vitrification Using Unimolecular Self-Organizing Polymers: Evolution of Morphology and Nanoporosity Development with Network Formation. Advanced Materials, 2005, 17, 1031-1035.	11.1	21
71	Thin-film transformations and volatile products in the formation of nanoporous low-k polymethylsilsesquioxane-based dielectric. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 908.	1.6	15
72	Persistence Length Changes Dramatically as RNA Folds. Physical Review Letters, 2005, 95, 268303.	2.9	81

#	Article	IF	CITATIONS
73	RNA Tertiary Interactions Mediate Native Collapse of a Bacterial Group I Ribozyme. Journal of Molecular Biology, 2005, 353, 1199-1209.	2.0	66
74	Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer, 2004, 45, 881-891.	1.8	422
75	Effect of random and block copolymer additives on a homopolymer blend studied by small-angle neutron scattering. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3191-3203.	2.4	1
76	ToF-SIMS studies of nanoporous PMSSQ materials: kinetics and reactions in the processing of low-K dielectrics for ULSI applications. Surface and Interface Analysis, 2004, 36, 304-310.	0.8	7
77	Mechanical properties of polyurethane film exposed to solutions of nonoxynol-9 surfactant and poly(ethylene glycol). Journal of Applied Polymer Science, 2004, 91, 1086-1096.	1.3	9
78	Compaction of a Bacterial Group I Ribozyme Coincides with the Assembly of Core Helices. Biochemistry, 2004, 43, 1746-1753.	1.2	58
79	Phase Behavior of Ultrathin Polymer Mixtures. Macromolecules, 2004, 37, 6676-6679.	2.2	11
80	Small-angle neutron scattering of arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers. Polymer, 2003, 44, 6579-6587.	1.8	11
81	Interfacial fracture toughness between glassy polymer networks. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1902-1908.	2.4	3
82	Neutron Reflectivity on Nanoporous Poly(Methylsilsesquioxane) Thin Films. Chemistry of Materials, 2003, 15, 609-611.	3.2	20
83	Material Characterization and the Formation of Nanoporous PMSSQ Low-K Dielectrics. AIP Conference Proceedings, 2003, , .	0.3	0
84	Neutron Scattering Study of Chain Conformations in the Energetically Neutral Pores of Vycor Glass. Macromolecules, 2002, 35, 6384-6391.	2.2	6
85	Polystyrene Networkâ^'Network Interdiffusion. Macromolecules, 2002, 35, 6638-6644.	2.2	5
86	Studies of Organically Modified Clays by Scattering Techniques. ACS Symposium Series, 2001, , 127-140.	0.5	1
87	Chain Conformation in Ultrathin Polymer Films Using Small-Angle Neutron Scattering. Macromolecules, 2001, 34, 559-567.	2.2	105
88	A SANS Study of the Conformational Behavior of Linear Chains in Compressed and Uncompressed End-Linked Elastomers. Macromolecules, 2001, 34, 7773-7782.	2.2	20
89	Characterization of Organically Modified Clays Using Scattering and Microscopy Techniques. Chemistry of Materials, 2001, 13, 1923-1931.	3.2	110
90	Mean residence time analysis for twin screw extruders. Polymer Engineering and Science, 2000, 40, 227-237.	1.5	41

#	Article	IF	Citations
91	Small-Angle Neutron Scattering of Blends of Arborescent Polystyrenes. Macromolecules, 2000, 33, 6495-6501.	2.2	15
92	Nanoporous Polyimides. Advances in Polymer Science, 1999, , 1-43.	0.4	80
93	Non-uniform composition profiles in thin film polymeric nanofoams. Polymer, 1999, 40, 2547-2553.	1.8	11
94	Chain conformation in ultrathin polymer films. Nature, 1999, 400, 146-149.	13.7	261
95	Residence-time distribution model for twin-screw extruders. AICHE Journal, 1999, 45, 2541-2549.	1.8	65
96	Small-Angle Neutron Scattering of Solutions of Arborescent Graft Polystyrenes. Macromolecules, 1999, 32, 7879-7886.	2.2	24
97	Small-angle neutron scattering of polymer blends of polyvinylmethylether at dilute concentration in deuterated polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1-9.	2.4	13
98	Shear effect on the devolatilization of filled polymers. Journal of Vinyl and Additive Technology, 1998, 4, 45-49.	1.8	0
99	Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends. Macromolecules, 1998, 31, 9247-9252.	2.2	17
100	Slip Flow in Partially Filled Screw Channel. Journal of Reinforced Plastics and Composites, 1998, 17, 712-724.	1.6	0
101	Small-angle neutron scattering of polymer blends of polyvinylmethylether at dilute concentration in deuterated polystyrene., 1998, 36, 1.		1
102	Conformation of Free Linear Polymer Chains in a Polymer Network. Macromolecules, 1997, 30, 4704-4712.	2.2	14
103	Polymer blends, copolymers and networks. Scattering properties and phase behavior. Macromolecular Theory and Simulations, 1997, 6, 197-235.	0.6	4
104	Transmission electron microscopy of 3F/PMDA-polypropylene oxide triblock copolymer based nanofoams. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1067-1076.	2.4	14
105	Reactive Reinforcement of Polystyrene/Poly(2-vinylpyridine) Interfaces. Macromolecules, 1996, 29, 4969-4975.	2.2	32
106	Characterization of thin Polymeric Nanofoam films by Transmission Electron Microscopy and Small Angle Neutron Scattering. Materials Research Society Symposia Proceedings, 1996, 461, 103.	0.1	1
107	Morphology control and interfacial reinforcement in reactive polystyrene/amorphous polyamide blends. Polymer, 1996, 37, 3509-3519.	1.8	104
108	Immiscibility in polystyrene/sulfonated polystyrene blends. Polymer, 1995, 36, 1969-1973.	1.8	34

#	Article	IF	Citations
109	The Collapse of Free Polymer Chains in a Network. Science, 1995, 268, 395-397.	6.0	26
110	Collapse of a Polymer in a Polymeric Solvent. Macromolecules, 1995, 28, 4020-4022.	2.2	6
111	Grafted Interpenetrating Polymer Networks. Advances in Chemistry Series, 1994, , 179-195.	0.6	9
112	Small angle neutron scattering from polymer blends in the dilute concentration limit. Journal of Chemical Physics, 1994, 101, 2592-2599.	1.2	27
113	Electron beam crosslinking of poly(vinylmethyl ether). Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 811-815.	2.4	5
114	Fracture toughness of discontinuously reinforced Al-4Cu-1.5Mg/TiB2 composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 2461-2467.	1.1	16
115	Collapse of Isolated Chains in a Network. Materials Research Society Symposia Proceedings, 1994, 376, 271.	0.1	0
116	Radius of Gyration Scaling in the Semidilute Regime. Materials Research Society Symposia Proceedings, 1994, 376, 291.	0.1	0
117	The morphology of poly(vinylidene fluoride) crystallized from blends of poly(vinylidene fluoride) and poly(ethyl acrylate). Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 1253-1272.	2.4	55
118	Effect of crosslinks on the miscibility of a deuterated polybutadiene and protonated polybutadiene blend. Macromolecules, 1993, 26, 182-188.	2.2	18
119	Diffusion of linear deuterated polystyrene chains in crosslinked polystyrene networks. Macromolecules, 1993, 26, 6431-6435.	2.2	18
120	Small Angle Neutron Scattering Studies of Single Phase IPNs. Materials Research Society Symposia Proceedings, 1992, 274, 59.	0.1	1
121	Phase separation behavior in blends of poly(benzimidazole) and poly(ether imide). Macromolecules, 1992, 25, 4734-4743.	2.2	17
122	Small angle neutron scattering from deuterated polystyrene/poly(vinylmethyl ether)/protonated polystyrene ternary polymer blends. Polymer, 1992, 33, 1785-1787.	1.8	26
123	Small-angle neutron scattering of blends of crosslinked and linear polystyrene. Macromolecules, 1991, 24, 1899-1904.	2.2	26
124	The hard segment unit cell for MDI-BDO-based polyurethane elastomers. Polymer, 1990, 31, 1003-1008.	1.8	35
125	Preparation of polymer crystal nuclei. Journal of Polymer Science, Part C: Polymer Letters, 1989, 27, 489-496.	0.7	4
126	Small-angle neutron scattering studies of compatible blends of linear poly(vinyl methyl ether) and cross-linked deuterated polystyrene. Macromolecules, 1989, 22, 940-948.	2,2	56

#	Article	IF	CITATIONS
127	Small Angle Neutron Scattering Studies of Blends of Protonated Linear Polystyrene with Crosslinked Deuterated Polystyrene. Materials Research Society Symposia Proceedings, 1989, 171, 203.	0.1	1
128	Electron energy loss spectroscopy: Application to synthetic organic polymers. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 621-636.	2.4	11
129	Effect of crosslinks on the phase separation behavior of a miscible polymer blend. Macromolecules, 1988, 21, 3296-3303.	2.2	67
130	The phase diagram and morphology of blends of poly(vinylidene fluoride) and poly(ethyl acrylate). Polymer, 1987, 28, 38-46.	1.8	169
131	Electron microscopy of polymer blends. Proceedings Annual Meeting Electron Microscopy Society of America, 1987, 45, 506-509.	0.0	0
132	The crystal habit and morphology of polybutylene terephthalate and related copolymers. Polymer, 1986, 27, 66-70.	1.8	24
133	The structure of MDI/BDO-based polyurethanes: Diffraction studies on model compounds and oriented thin films. Journal of Polymer Science, Polymer Physics Edition, 1985, 23, 1915-1932.	1.0	49
134	Crystallization behaviour of random block copolymers of poly(butylene terephthalate) and poly(tetramethylene ether glycol). Polymer, 1985, 26, 8-16.	1.8	65
135	Microstructure of high modulus solid state extruded polyethylene: 2. X-ray scattering studies of 12, 24 and 36 extrusion draw ratio. Polymer, 1985, 26, 17-26.	1.8	23
136	Structure and morphology of segmented polyurethanes: 2. Influence of reactant incompatibility. Polymer, 1983, 24, 1333-1340.	1.8	71
137	Investigation of two crystal forms in MDI/BDO-based polyurethanes. Journal of Macromolecular Science - Physics, 1983, 22, 509-528.	0.4	88
138	Morphological study of the structure developed during the polymerization of a series of segmented polyurethanes. Polymer, 1982, 23, 1060-1068.	1.8	75