Zbigniew Adamczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395147/publications.pdf

Version: 2024-02-01

247 papers

8,196 citations

50566 48 h-index 76 g-index

252 all docs

252 docs citations

times ranked

252

5886 citing authors

#	Article	IF	CITATIONS
1	Poly-L-Arginine Molecule Properties in Simple Electrolytes: Molecular Dynamic Modeling and Experiments. International Journal of Environmental Research and Public Health, 2022, 19, 3588.	1.2	10
2	Nanoparticle and bioparticle deposition kinetics. Advances in Colloid and Interface Science, 2022, 302, 102630.	7.0	12
3	Chitosan characteristics in electrolyte solutions: Combined molecular dynamics modeling and slender body hydrodynamics. Carbohydrate Polymers, 2022, 292, 119676.	5.1	7
4	Human Vimentin Layers on Solid Substrates: Adsorption Kinetics and Corona Formation Investigations. Biomacromolecules, 2022, 23, 3308-3317.	2.6	4
5	QCM-D Investigations of Anisotropic Particle Deposition Kinetics: Evidences of the Hydrodynamic Slip Mechanisms. Analytical Chemistry, 2022, 94, 10234-10244.	3.2	8
6	Adsorption kinetic of myoglobin on mica and silica – Role of electrostatic interactions. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111436.	2.5	6
7	Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements. Nanomaterials, 2021, 11, 145.	1.9	15
8	Hematite/Polystyrene Raspberryâ€Like Microcomposites as Stable Support for Silver Nanoparticle Immobilization. Particle and Particle Systems Characterization, 2021, 38, 2000239.	1.2	0
9	Macroion molecule properties from slender body hydrodynamics. Polymers for Advanced Technologies, 2021, 32, 3900-3908.	1.6	4
10	Formation of Myoglobin Corona at Polymer Microparticles. Colloids and Interfaces, 2021, 5, 27.	0.9	3
11	Nanoparticle deposition on heterogeneous surfaces: Random sequential adsorption modeling and experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126296.	2.3	9
12	Mechanism of Myoglobin Molecule Adsorption on Silica: QCM, OWLS and AFM Investigations. International Journal of Environmental Research and Public Health, 2021, 18, 4944.	1.2	0
13	SARS-CoV-2 virion physicochemical characteristics pertinent to abiotic substrate attachment. Current Opinion in Colloid and Interface Science, 2021, 55, 101466.	3.4	17
14	Carrageenan molecule conformations and electrokinetic properties in electrolyte solutions: Modeling and experimental measurements. Food Hydrocolloids, 2021, 121, 107033.	5.6	5
15	Deposition of Polymer Particles with Fibrinogen Corona at Abiotic Surfaces under Flow Conditions. Molecules, 2021, 26, 6299.	1.7	5
16	Applicability of QCM-D for Quantitative Measurements of Nano- and Microparticle Deposition Kinetics: Theoretical Modeling and Experiments. Analytical Chemistry, 2020, 92, 15087-15095.	3.2	30
17	Hydrodynamic Solvation of Poly(amido amine) Dendrimer Monolayers on Silica. Journal of Physical Chemistry C, 2020, 124, 17684-17695.	1.5	14
18	Hydrodynamic Solvent Coupling Effects in Quartz Crystal Microbalance Measurements of Nanoparticle Deposition Kinetics. Analytical Chemistry, 2020, 92, 3896-3903.	3.2	20

#	Article	IF	Citations
19	Microparticle Deposition on Human Serum Albumin Layers: Unraveling Anomalous Adsorption Mechanism. Colloids and Interfaces, 2020, 4, 51.	0.9	3
20	Formation of Poly- <scp>l</scp> -lysine Monolayers on Silica: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2020, 124, 4571-4581.	1.5	19
21	Myoglobin molecule charging in electrolyte solutions. Physical Chemistry Chemical Physics, 2020, 22, 26764-26775.	1.3	6
22	Mechanism of fibrinogen /microparticle complex deposition on solid substrates: Role of pH. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110424.	2.5	6
23	Mechanisms of Fibrinogen Adsorption on Silica Sensors at Various pHs: Experiments and Theoretical Modeling. Langmuir, 2019, 35, 11275-11284.	1.6	15
24	Formation of Strong Polycation (Poly[(3-allylamino-2-hydroxypropyl)trimethylammonium chloride]) Monolayers on Mica, Silica, and Gold Substrates: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2019, 123, 19022-19032.	1.5	5
25	Gold nanoparticles deposited on silica microparticles - Electrokinetic characteristics and application in SERS. Colloids and Interface Science Communications, 2019, 33, 100219.	2.0	17
26	Kinetics of Poly- <scp>l</scp> -lysine Adsorption on Mica and Stability of Formed Monolayers: Theoretical and Experimental Studies. Langmuir, 2019, 35, 12042-12052.	1.6	12
27	Human Serum Albumin Adsorption Kinetics on Silica: Influence of Protein Solution Stability. Langmuir, 2019, 35, 2639-2648.	1.6	26
28	Monolayers of silver nanoparticles obtained by green synthesis on macrocation modified substrates. Materials Chemistry and Physics, 2019, 227, 224-235.	2.0	11
29	Gold substrates of controlled roughness and electrokinetic properties formed by nanoparticle deposition. Physical Chemistry Chemical Physics, 2019, 21, 6535-6543.	1.3	7
30	Streaming Current and Effective ζ-Potential for Particle-Covered Surfaces with Random Particle Distributions. Journal of Physical Chemistry C, 2019, 123, 3517-3531.	1.5	12
31	Formation of gold nanoparticle bilayers on gold sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 393-401.	2.3	13
32	Protein adsorption: A quest for a universal mechanism. Current Opinion in Colloid and Interface Science, 2019, 41, 50-65.	3.4	36
33	Kinetics of human serum albumin adsorption at silica sensor: Unveiling dynamic hydration function. Colloids and Surfaces B: Biointerfaces, 2018, 167, 377-384.	2.5	20
34	Albumin adsorption at solid substrates: A quest for a unified approach. Journal of Colloid and Interface Science, 2018, 514, 769-790.	5.0	45
35	Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization. Physical Chemistry Chemical Physics, 2018, 20, 15368-15379.	1.3	11
36	Silver nanoparticle/fibrinogen bilayers – Mechanism of formation and stability determined by in situ electrokinetic measurements. Journal of Colloid and Interface Science, 2018, 513, 170-179.	5.0	5

#	Article	lF	Citations
37	Conformations of Poly- <scp>l</scp> -lysine Molecules in Electrolyte Solutions: Modeling and Experimental Measurements. Journal of Physical Chemistry C, 2018, 122, 23180-23190.	1.5	23
38	Gold Nanoparticle Layers on Polystyrene Microspheres of Controlled Structure and Electrokinetic Properties. Langmuir, 2018, 34, 8489-8498.	1.6	16
39	Protein adsorption mechanisms at rough surfaces: Serum albumin at a gold substrate. Journal of Colloid and Interface Science, 2018, 530, 631-641.	5.0	39
40	Lysozyme Monolayers at Polymer Microparticles: Electrokinetic Characteristics and Modeling. Journal of Physical Chemistry C, 2018, 122, 17846-17855.	1.5	11
41	Formation, properties and stability of silver nanoparticle monolayers at PDADMAC modified polystyrene microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 317-325.	2.3	5
42	Preparation of iron oxide nanoparticles doped by chromium for application in water–gas shift reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 523, 71-80.	2.3	5
43	Formation of positively charged gold nanoparticle monolayers on silica sensors. Journal of Colloid and Interface Science, 2017, 501, 192-201.	5.0	27
44	Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements. Journal of Colloid and Interface Science, 2017, 503, 186-197.	5.0	12
45	Formation of hematite nanoparticle monolayers of controlled coverage and structure at polymeric microparticles. Journal of Colloid and Interface Science, 2017, 505, 509-518.	5.0	11
46	Formation and stability of polyelectrolyte/polypeptide monolayers determined by electrokinetic measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 302-310.	2.3	18
47	Spheroidal Microparticle Monolayers Characterized by Streaming Potential Measurements. Langmuir, 2017, 33, 9916-9925.	1.6	10
48	Silica nanoparticle monolayers on a macroion modified surface: formation mechanism and stability. Physical Chemistry Chemical Physics, 2017, 19, 22721-22732.	1.3	29
49	Monolayers of immunoglobulin G on polystyrene microparticles and their interactions with human serum albumin. Journal of Colloid and Interface Science, 2017, 490, 587-597.	5.0	8
50	Homogeneous gold nanoparticle monolayersâ€"QCM and electrokinetic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 226-235.	2.3	22
51	Monolayers of poly(amido amine) dendrimers on mica – In situ streaming potential measurements. Journal of Colloid and Interface Science, 2017, 485, 232-241.	5.0	19
52	Potential Interactions Among Particles. Interface Science and Technology, 2017, 20, 9-167.	1.6	1
53	Significance of Particle Deposition. Interface Science and Technology, 2017, 20, 1-8.	1.6	0
54	Dissipative Interactions. Interface Science and Technology, 2017, , 169-325.	1.6	1

#	Article	IF	Citations
55	Transfer of Particles to Interfacesâ€"Linear Problems. Interface Science and Technology, 2017, , 327-511.	1.6	1
56	Formation mechanism of human serum albumin monolayers on positively charged polymer microparticles. Colloids and Surfaces B: Biointerfaces, 2017, 159, 929-936.	2.5	17
57	Monolayers of silver nanoparticles on positively charged polymer microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 1-9.	2.3	13
58	Streaming potential studies of the adsorption of fluorescently-labeled poly(ethylene imine) onto mica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 256-265.	2.3	3
59	Gold Nanoparticle Monolayers of Controlled Coverage and Structure. Journal of Physical Chemistry C, 2016, 120, 11807-11819.	1.5	24
60	Monolayers of the HSA dimer on polymeric microparticles-electrokinetic characteristics. Colloids and Surfaces B: Biointerfaces, 2016, 148, 229-237.	2.5	18
61	Monolayers of Poly(styrene/α- <i>tert</i> -butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates. Langmuir, 2016, 32, 9566-9574.	1.6	4
62	Silica Monolayer Formation and Stability Determined by in situ Streaming Potential Measurements. Electrochimica Acta, 2016, 206, 409-418.	2.6	12
63	Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling. Colloids and Surfaces B: Biointerfaces, 2016, 139, 123-131.	2.5	22
64	Oxidative dissolution of silver nanoparticles: A new theoretical approach. Journal of Colloid and Interface Science, 2016, 469, 355-364.	5.0	44
65	Mechanism of immunoglobulin G adsorption on polystyrene microspheres. Colloids and Surfaces B: Biointerfaces, 2016, 137, 183-190.	2.5	12
66	Revealing deposition mechanism of colloid particles on human serum albumin monolayers. Colloids and Surfaces B: Biointerfaces, 2016, 137, 176-182.	2.5	9
67	Modelling and measurements of fibrinogen adsorption on positively charged microspheres. Condensed Matter Physics, 2016, 19, 13801.	0.3	2
68	pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	4
69	Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements. Colloids and Surfaces B: Biointerfaces, 2015, 127, 192-199.	2.5	17
70	Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements. Journal of Colloid and Interface Science, 2015, 457, 378-387.	5.0	30
71	Monolayers of poly-l-lysine on mica – Electrokinetic characteristics. Journal of Colloid and Interface Science, 2015, 456, 116-124.	5.0	32
72	Kinetics of Silver Nanoparticle Deposition at PAH Monolayers: Reference QCM Results. Langmuir, 2015, 31, 2988-2996.	1.6	43

#	Article	IF	Citations
73	Mapping single macromolecule chains using the colloid deposition method: PDADMAC on mica. Journal of Colloid and Interface Science, 2015, 450, 82-90.	5.0	13
74	Revealing fibrinogen monolayer conformations at different pHs: Electrokinetic and colloid deposition studies. Journal of Colloid and Interface Science, 2015, 449, 62-71.	5.0	8
75	Deposition of silver nanoparticles from suspensions containing tannic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 70-76.	2.3	5
76	Influence of supporting polyelectrolyte layers on the coverage and stability of silver nanoparticle coatings. Journal of Colloid and Interface Science, 2015, 445, 205-212.	5.0	19
77	High density monolayers of plasmid protein on latex particles: experiments and theoretical modeling. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P04003.	0.9	9
78	Electrokinetic characteristics of HSA dimer and its monolayers at mica. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1207-1214.	2.5	8
79	Charge Stabilized Silver Nanoparticles Applied as Antibacterial Agents. Journal of Nanoscience and Nanotechnology, 2015, 15, 3574-3583.	0.9	31
80	Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements. Journal of Colloid and Interface Science, 2015, 438, 249-258.	5.0	41
81	Silver particle monolayers — Formation, stability, applications. Advances in Colloid and Interface Science, 2015, 222, 530-563.	7.0	60
82	Fibrinogen Monolayers of Controlled Coverage and Conformations for Biosensing Applications. Key Engineering Materials, 2014, 605, 243-246.	0.4	0
83	Deposition of gold nanoparticles on mica modified by poly(allylamine hydrochloride) monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 204-210.	2.3	18
84	Mechanism of immonoglobulin G adsorption on mica-AFM and electrokinetic studies. Colloids and Surfaces B: Biointerfaces, 2014, 118, 57-64.	2.5	14
85	Hematite/silver nanoparticle bilayers on mica – AFM, SEM and streaming potential studies. Journal of Colloid and Interface Science, 2014, 424, 75-83.	5.0	27
86	Influence of ionic strength on poly(diallyldimethylammonium chloride) macromolecule conformations in electrolyte solutions. Journal of Colloid and Interface Science, 2014, 435, 182-190.	5.0	36
87	Recombinant Albumin Monolayers on Latex Particles. Langmuir, 2014, 30, 250-258.	1.6	20
88	Monolayers of silver nanoparticles obtained by chemical reduction methods. Surface Innovations, 2014, 2, 160-172.	1.4	25
89	Human Fibrinogen Adsorption on Positively Charged Latex Particles. Langmuir, 2014, 30, 11165-11174.	1.6	29
90	Mechanism of Nanoparticle Deposition on Polystyrene Latex Particles. Langmuir, 2014, 30, 692-699.	1.6	20

#	Article	IF	CITATIONS
91	Formation of PDADMAC monolayers evaluated in situ by QCM and streaming potential measurements. Journal of Colloid and Interface Science, 2014, 428, 170-177.	5.0	34
92	Human Fibrinogen Adsorption on Latex Particles at pH 7.4 Studied by Electrophoretic Mobility and AFM Measurements. Current Topics in Medicinal Chemistry, 2014, 14, 640-648.	1.0	14
93	Mechanisms of Fibrinogen Adsorption at Solid Substrates. Current Topics in Medicinal Chemistry, 2014, 14, 702-729.	1.0	24
94	Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics. Journal of Nanoparticle Research, 2013, 15, 1460.	0.8	29
95	Monolayers of cationic polyelectrolytes on mica $\hat{a} \in \text{``Electrokinetic studies. Journal of Colloid and Interface Science, 2013, 407, 196-204.}$	5.0	58
96	Fibrinogen Monolayer Characterization by Colloid Deposition. Langmuir, 2013, 29, 11991-12002.	1.6	11
97	Mechanisms of nanoparticle and bioparticle deposition – Kinetic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 3-22.	2.3	46
98	Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements. Journal of Nanoparticle Research, 2013, 15, 2076.	0.8	14
99	Kinetics of fluorescent latex particle deposition at polyelectrolyte monolayers determined by in situ measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 237-244.	2.3	6
100	Tuning conformations of fibrinogen monolayers on latex particles by pH of adsorption. Colloids and Surfaces B: Biointerfaces, 2013, 103, 482-488.	2.5	17
101	Revealing properties of the KfrA plasmid protein via combined DLS, AFM and electrokinetic measurements. Colloids and Surfaces B: Biointerfaces, 2013, 103, 635-641.	2.5	19
102	KfrA plasmid protein monolayers on latex particles-electrokinetic measurements. Colloids and Surfaces B: Biointerfaces, 2013, 112, 165-170.	2.5	8
103	Controlled Release of Silver Nanoparticles from Monolayers Deposited on PAH Covered Mica. Langmuir, 2013, 29, 3546-3555.	1.6	31
104	Human Fibrinogen Monolayers on Latex Particles: Role of Ionic Strength. Langmuir, 2013, 29, 3700-3710.	1.6	39
105	Mechanisms of Fibrinogen Adsorption at Solid Substrates at Lower pH. Langmuir, 2013, 29, 7005-7016.	1.6	44
106	Mechanism of HSA adsorption on mica determined by streaming potential, AFM and XPS measurements. Colloids and Surfaces B: Biointerfaces, 2013, 101, 442-449.	2.5	37
107	Mechanisms of Fibrinogen Adsorption on Mica. ACS Symposium Series, 2012, , 97-127.	0.5	4
108	Mechanisms of Fibrinogen Adsorption on Latex Particles Determined by Zeta Potential and AFM Measurements. Langmuir, 2012, 28, 474-485.	1.6	42

#	Article	IF	Citations
109	Fibrinogen conformations and charge in electrolyte solutions derived from DLS and dynamic viscosity measurements. Journal of Colloid and Interface Science, 2012, 385, 244-257.	5.0	63
110	Hematite nanoparticle monolayers on mica electrokinetic characteristics. Journal of Colloid and Interface Science, 2012, 386, 121-128.	5.0	19
111	Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. Journal of Colloid and Interface Science, 2012, 386, 51-59.	5.0	28
112	Hematite nanoparticle monolayers on mica: Characterization by colloid deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 72-81.	2.3	10
113	Human Serum Albumin Monolayers on Mica: Electrokinetic Characteristics. Langmuir, 2012, 28, 15663-15673.	1.6	25
114	Modeling adsorption of colloids and proteins. Current Opinion in Colloid and Interface Science, 2012, 17, 173-186.	3.4	103
115	Ionic strength effect in HSA adsorption on mica determined by streaming potential measurements. Journal of Colloid and Interface Science, 2012, 366, 105-113.	5.0	57
116	Tuning properties of silver particle monolayers via controlled adsorption–desorption processes. Journal of Colloid and Interface Science, 2012, 376, 1-11.	5.0	42
117	Fibrinogen Adsorption on Mica Studied by AFM and in Situ Streaming Potential Measurements. Langmuir, 2011, 27, 686-696.	1.6	106
118	Mechanisms of Fibrinogen Adsorption at Solid Substrates. Langmuir, 2011, 27, 6868-6878.	1.6	85
119	High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. Journal of Colloid and Interface Science, 2011, 364, 39-48.	5.0	72
120	Colloid particle and protein deposition â€" Electrokinetic studies. Advances in Colloid and Interface Science, 2011, 168, 3-28.	7.0	76
121	Kinetics of silver nanoparticle deposition onto poly(ethylene imine) modified mica determined by AFM and SEM measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 261-268.	2.3	20
122	Deposition of colloid particles on protein layers: Fibrinogen on mica. Journal of Colloid and Interface Science, 2011, 356, 454-464.	5.0	27
123	Zeta potential of particle bilayers on mica: A streaming potential study. Journal of Colloid and Interface Science, 2011, 360, 195-203.	5.0	25
124	Streaming potential studies of colloid, polyelectrolyte and protein deposition. Advances in Colloid and Interface Science, 2010, 153, 1-29.	7.0	136
125	Irreversible adsorption of latex particles on fibrinogen covered mica. Adsorption, 2010, 16, 259-269.	1.4	12
126	Silver nanoparticle monolayers on poly(ethylene imine) covered mica produced by colloidal self-assembly. Journal of Colloid and Interface Science, 2010, 345, 187-193.	5.0	15

#	Article	IF	Citations
127	Hydrodynamic radii and diffusion coefficients of particle aggregates derived from the bead model. Journal of Colloid and Interface Science, 2010, 347, 192-201.	5.0	25
128	Electrokinetics of particle covered surfaces. Current Opinion in Colloid and Interface Science, 2010, 15, 175-183.	3.4	9
129	Conformations of poly(allylamine hydrochloride) in electrolyte solutions: Experimental measurements and theoretical modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355, 7-15.	2.3	59
130	Zeta Potential of Mica Covered by Colloid Particles: A Streaming Potential Study. Langmuir, 2010, 26, 9368-9377.	1.6	83
131	Kinetics of Fibrinogen Adsorption on Hydrophilic Substrates. Langmuir, 2010, 26, 11934-11945.	1.6	59
132	Improvement of Wetting Properties of Colloid Silica Binders. Industrial & Engineering Chemistry Research, 2010, 49, 8532-8537.	1.8	3
133	Streaming current and streaming potential for particle covered surfaces: Virial expansion and simulations. Journal of Chemical Physics, 2009, 130, 144706.	1.2	47
134	Deposition of colloid particles at heterogeneous and patterned surfaces. Advances in Colloid and Interface Science, 2009, 147-148, 2-17.	7.0	24
135	Structure of poly (sodium 4-styrenesulfonate) (PSS) in electrolyte solutions: Theoretical modeling and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 96-103.	2.3	43
136	Colloid particle deposition on heterogeneous surfaces produced by polyelectrolyte adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 111-117.	2.3	21
137	Structure of Fibrinogen in Electrolyte Solutions Derived from Dynamic Light Scattering (DLS) and Viscosity Measurements. Langmuir, 2009, 25, 3698-3704.	1.6	98
138	Characterization of Globular Protein Solutions by Dynamic Light Scattering, Electrophoretic Mobility, and Viscosity Measurements. Langmuir, 2008, 24, 6866-6872.	1.6	316
139	Formation of multilayered structures in the layer by layer deposition of colloid particles. Journal of Colloid and Interface Science, 2008, 317, 1-10.	5.0	18
140	Particle Assembly on Patterned Surfaces Bearing Circular (Dots) and Rectangular (Stripes) Surface Features. Langmuir, 2008, 24, 1756-1762.	1.6	18
141	Irreversible Adsorption of Particles on Surface Features of a Circular and Rectangular Shape. Adsorption Science and Technology, 2007, 25, 463-472.	1.5	1
142	Particle Assembly on Surface Features (Patterned Surfaces). Langmuir, 2007, 23, 5557-5562.	1.6	9
143	Modelling self-assembling of colloid particles in multilayered structures. Applied Surface Science, 2007, 253, 5776-5780.	3.1	14
144	Characterization of polyelectrolyte multilayers on mica and oxidized titanium by streaming potential and wetting angle measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 455-460.	2.3	37

#	Article	IF	Citations
145	Deposition of colloid particles on polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 467-472.	2.3	15
146	Characterization of rheological properties of colloidal zirconia. Journal of the European Ceramic Society, 2007, 27, 2209-2215.	2.8	18
147	Characterization of poly(ethylene imine) layers on mica by the streaming potential and particle deposition methods. Journal of Colloid and Interface Science, 2007, 313, 86-96.	5.0	56
148	Structure of Poly(acrylic acid) in Electrolyte Solutions Determined from Simulations and Viscosity Measurements. Journal of Physical Chemistry B, 2006, 110, 22426-22435.	1.2	84
149	Transfer of Particles to Interfaces – Linear Problems. Interface Science and Technology, 2006, 9, 375-565.	1.6	0
150	Significance of Particle Deposition. Interface Science and Technology, 2006, 9, 1-14.	1.6	1
151	Polyelectrolyte adsorption layers studied by streaming potential and particle deposition. Journal of Colloid and Interface Science, 2006, 303, 353-364.	5.0	64
152	Potential Interactions Among Particles. Interface Science and Technology, 2006, 9, 15-196.	1.6	1
153	Non–linear Transport of Particles. Interface Science and Technology, 2006, 9, 567-736.	1.6	0
154	Irreversible adsorption of colloid particles on heterogeneous surfaces. Applied Surface Science, 2005, 252, 723-729.	3.1	8
155	Irreversible adsorption of particles on heterogeneous surfaces. Advances in Colloid and Interface Science, 2005, 118, 25-42.	7.0	71
156	Surface Clusters of Colloid Particles Produced by Deposition on Sites. Langmuir, 2005, 21, 8952-8959.	1.6	17
157	Irreversible adsorption of particles at random-site surfaces. Journal of Chemical Physics, 2004, 120, 11155-11162.	1.2	27
158	Kinetics of particle deposition in the oblique impinging jet cell. Journal of Colloid and Interface Science, 2004, 269, 53-61.	5.0	18
159	Structure of colloid silica determined by viscosity measurements. Journal of Colloid and Interface Science, 2004, 273, 668-674.	5.0	43
160	In situ studies of particle deposition on non-transparent substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235, 65-72.	2.3	24
161	Deposition of latex particles at heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249, 95-98.	2.3	17
162	Characterization of Polyelectrolyte Multilayers by the Streaming Potential Method. Langmuir, 2004, 20, 10517-10525.	1.6	86

#	Article	IF	CITATIONS
163	Kinetics of Particle and Protein Adsorption. , 2004, , 211-360.		3
164	Particle adsorption and deposition: role of electrostatic interactions. Advances in Colloid and Interface Science, 2003, 100-102, 267-347.	7.0	130
165	Latex particle adsorption at heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 219-229.	2.3	13
166	A collection of papers presented at the International Symposium on Electrokinetic Phenomena Cracow, Poland, August 18–22, 2002. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222, 1-4.	2.3	1
167	Particle deposition at electrostatically heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222, 15-25.	2.3	20
168	Effect of electrolytes on surface tension of ionic surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222, 213-222.	2.3	61
169	Streaming potential of mica covered by latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222, 329-339.	2.3	27
170	Irreversible adsorption of hard spheres at random site (heterogeneous) surfaces. Journal of Chemical Physics, 2002, 116, 4665-4672.	1.2	28
171	Colloid Particle Adsorption at Random Site (Heterogeneous) Surfaces. Journal of Colloid and Interface Science, 2002, 248, 67-75.	5.0	42
172	Deposition of Particles in the Impinging-Jet Cell for the High Coverage Regime. Journal of Colloid and Interface Science, 2002, 248, 244-254.	5.0	21
173	Polystyrene Latex Adsorption at the Gold/Electrolyte Interface. Journal of Colloid and Interface Science, 2002, 254, 283-286.	5.0	9
174	Particle adsorption under irreversible conditions: kinetics and jamming coverage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 29-40.	2.3	16
175	Irreversible adsorption of colloid particles at heterogeneous surfaces. Applied Surface Science, 2002, 196, 250-263.	3.1	35
176	Kinetics of Colloid Particle Adsorption at Heterogeneous Surfaces. Langmuir, 2001, 17, 4529-4533.	1.6	27
177	CAD/CAM technological environment creation as an interactive application on the Web. Journal of Materials Processing Technology, 2001, 109, 222-228.	3.1	16
178	Influence of adsorbed particles on streaming potential of mica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 195, 3-15.	2.3	50
179	Colloid Particle Adsorption on Partially Covered (Random) Surfaces. Journal of Colloid and Interface Science, 2001, 241, 63-70.	5.0	15
180	Kinetics of Particle Deposition in the Radial Impinging-Jet Cell. Journal of Colloid and Interface Science, 2001, 242, 14-24.	5.0	54

#	Article	IF	Citations
181	Kinetics of Diffusion-Controlled Adsorption of Colloid Particles and Proteins. Journal of Colloid and Interface Science, 2000, 229, 477-489.	5.0	116
182	Role of convection in particle deposition at solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 165, 157-187.	2.3	32
183	Particle monolayers formed under irreversible conditions: jamming coverages and structure. Topics in Catalysis, 2000, 11/12, 435-449.	1.3	8
184	Kinetics of Irreversible Adsorption of Latex Particles under Diffusion-Controlled Transport. Langmuir, 2000, 16, 5730-5737.	1.6	52
185	Fluctuations in the number of irreversibly adsorbed particles. Journal of Chemical Physics, 2000, 113, 11336-11342.	1.2	11
186	Measurements of Streaming Potential for Mica Covered by Colloid Particles. Langmuir, 2000, 16, 1593-1601.	1.6	135
187	Irreversible adsorption/deposition kinetics: A generalized approach. Journal of Chemical Physics, 1999, 110, 3118-3128.	1.2	65
188	Application of the DLVO theory for particle deposition problems. Advances in Colloid and Interface Science, 1999, 83, 137-226.	7.0	257
189	Colloid Particle Adsorption in the Slot Impinging Jet Cell. Journal of Colloid and Interface Science, 1999, 209, 350-361.	5.0	23
190	Influence of Ionic Strength on Surface Tension of Cetyltrimethylammonium Bromide. Langmuir, 1999, 15, 8383-8387.	1.6	73
191	Density of Particle Monlayers Formed by Sedimentation. Journal of Colloid and Interface Science, 1998, 198, 183-185.	5.0	11
192	Deposition Kinetics of Particles at a Solid Surface Governed by the Ballistic Deposition Model. Langmuir, 1998, 14, 7267-7270.	1.6	9
193	Random sequential adsorption on partially covered surfaces. Journal of Chemical Physics, 1998, 108, 9851-9858.	1.2	29
194	Density fluctuations in irreversible adsorption processes: Hard ellipses in two dimensions. Journal of Chemical Physics, 1997, 107, 3691-3697.	1.2	17
195	Influence of Polydispersity on Random Sequential Adsorption of Spherical Particles. Journal of Colloid and Interface Science, 1997, 185, 236-244.	5.0	88
196	Calculations of Double-Layer Electrostatic Interactions for the Sphere/Plane Geometry. Journal of Colloid and Interface Science, 1997, 187, 283-295.	5.0	75
197	Unoriented Adsorption of Interacting Spheroidal Particles. Journal of Colloid and Interface Science, 1997, 189, 348-360.	5.0	33
198	NOTE. Journal of Colloid and Interface Science, 1997, 195, 261-263.	5.0	16

#	Article	IF	Citations
199	Role of electrostatic interactions in particle adsorption. Advances in Colloid and Interface Science, 1996, 63, 41-149.	7.0	230
200	Adsorption of 1,3-Dioxane Derivatives at Mercury and Free Interfaces. Journal of Colloid and Interface Science, 1996, 178, 274-283.	5.0	5
201	Random sequential adsorption of spheroidal particles: Kinetics and jamming limit. Journal of Chemical Physics, 1996, 105, 5562-5573.	1.2	55
202	Fluctuations in the number of particles adsorbed under the influence of diffusion and flow. Journal of Chemical Physics, 1996, 105, 5552-5561.	1.2	31
203	Flow-Induced Surface Blocking Effects in Adsorption of Colloid Particles. Journal of Colloid and Interface Science, 1995, 174, 130-141.	5.0	56
204	Kinetics of Irreversible Adsorption of Interacting Spheroidal Particles. Langmuir, 1995, 11, 4400-4410.	1.6	25
205	Tensammetric Determination of Adsorption Isotherms and Adsorption Kinetics of 2-Alkyl-5-hydroxy-1,3-dioxanes. Journal of Colloid and Interface Science, 1994, 163, 74-80.	5.0	0
206	Kinetics of localized adsorption of colloid particles. Advances in Colloid and Interface Science, 1994, 48, 151-280.	7.0	319
207	Kinetics of colloid particle adsorption from slot impinging jets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 75, 185-193.	2.3	21
208	Influence of transport mechanism on adsorption of interacting colloid particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 115-124.	2.3	16
209	Kinetics of localized adsorption of colloid particles. Langmuir, 1992, 8, 2605-2610.	1.6	42
210	Reversible and irreversible adsorption of particles on homogeneous surfaces. Colloids and Surfaces, 1992, 62, 119-130.	0.9	44
211	Kinetics of localized adsorption of particles on homogeneous surfaces. Journal of Colloid and Interface Science, 1992, 151, 351-369.	5.0	63
212	Adsorption kinetics of a non-ionic surfactant on the stationary mercury electrode. Colloids and Surfaces, 1992, 66, 249-258.	0.9	2
213	Electrostatic Interactions of Bodies Bearing Thin Double‣ayers III. Dissimilar Double‣ayers. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 566-573.	0.9	6
214	Direct measurements of interaction forces between bodies bearing thin double-layers. Colloids and Surfaces, 1991, 57, 355-367.	0.9	2
215	Localized adsorption of particles on spherical and cylindrical interfaces. Journal of Colloid and Interface Science, 1991, 146, 123-136.	5.0	29
216	Calculation of electrostatic interaction forces between ellipsoidal particles. Colloid and Polymer Science, 1991, 269, 528-531.	1.0	15

#	Article	IF	CITATIONS
217	Structure and ordering in localized adsorption of particles. Journal of Colloid and Interface Science, 1990, 140, 123-137.	5.0	192
218	Electrostatic Interactions of Bodies Bearing Thin Doubleâ€Layers I. General Formulation. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 1483-1492.	0.9	21
219	Electrostatic Interactions of Bodies Bearing Thin Double-Layers II. Exact Numerical Solutions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 1492-1499.	0.9	9
220	Particle transfer and deposition from flowing colloid suspensions. Colloids and Surfaces, 1989, 35, 283-308.	0.9	29
221	Adsorption kinetics and compositional surface elasticity of multicomponent surfactant solutions. Journal of Colloid and Interface Science, 1989, 133, 23-56.	5.0	15
222	Particle Deposition from Flowing Suspensions. Colloids and Surfaces, 1989, 39, 1-37.	0.9	62
223	Enhanced deposition of particles under attractive double-layer forces. Journal of Colloid and Interface Science, 1989, 130, 578-587.	5.0	66
224	Effect of the surface charge on the defect transport kinetics through interfaces of ionic solids. Reactivity of Solids, 1987, 4, 139-150.	0.3	4
225	Nonequilibrium surface tension for mixed adsorption kinetics. Journal of Colloid and Interface Science, 1987, 120, 477-485.	5.0	39
226	Adsorption and desorption kinetics of molecules and colloidal particles. Journal of Colloid and Interface Science, 1987, 118, 20-49.	5.0	65
227	Effect of segregation on near-surface and bulk transport phenomena in ionic crystals. Journal of Physics and Chemistry of Solids, 1986, 47, 11-27.	1.9	49
228	Kinetics of latex particle deposition from flowing suspensions. Journal of Colloid and Interface Science, 1986, 110, 188-200.	5.0	69
229	The effect of fluctuations of the energy barrier on colloid stability. Journal of Colloid and Interface Science, 1985, 106, 299-306.	5.0	15
230	Kinetics of particle accumulation at collector surfaces. I. Approximate analytical solutions. Journal of Colloid and Interface Science, 1984, 97, 68-90.	5.0	47
231	Kinetics of particle accumulation at collector surfaces. II. Exact numerical solutions. Journal of Colloid and Interface Science, 1984, 97, 91-104.	5.0	41
232	Particle transfer to solid surfaces. Advances in Colloid and Interface Science, 1983, 19, 183-252.	7.0	166
233	Pathlines around freely rotating spheroids in simple shear flow. International Journal of Multiphase Flow, 1983, 9, 203-217.	1.6	6
234	Resistance coefficient of a solid sphere approaching plane and curved boundaries. Journal of Colloid and Interface Science, 1983, 96, 204-213.	5.0	49

#	Article	IF	Citations
235	Transfer of brownian particles to continuous moving surfaces. Chemical Engineering Science, 1982, 37, 1513-1522.	1.9	15
236	Particle transfer to a plate in uniform flow. Chemical Engineering Science, 1982, 37, 869-880.	1.9	21
237	Long nonstationary transitions in particle deposition under external forces. Journal of Colloid and Interface Science, 1981, 79, 381-389.	5.0	9
238	Deposition of particles under external forces in laminar flow through parallel-plate and cylindrical channels. Journal of Colloid and Interface Science, 1981, 80, 340-356.	5.0	158
239	Deposition of brownian particles onto cylindrical collectors. Journal of Colloid and Interface Science, 1981, 84, 497-518.	5.0	80
240	Kinetic study of abstraction of ethyl xanthate ions by oxidized chalcocite surface. International Journal of Mineral Processing, 1980, 7, 57-77.	2.6	12
241	Deposition of particles onto the rotating disk under transient conditions. Journal of Colloid and Interface Science, 1980, 78, 559-562.	5.0	15
242	Nearâ€Surface and Bulk Chemical Diffusion of Undoped NiO. Journal of the Electrochemical Society, 1980, 127, 1117-1120.	1.3	10
243	Investigation on fine particle deposition from flowing suspensions onto planar surfaces. Powder Technology, 1980, 27, 125-136.	2.1	20
244	Work Function and Chemical Diffusion of Nonstoichiometric Oxide Materials. Journal of the Electrochemical Society, 1980, 127, 1112-1116.	1.3	7
245	Noninertial particle transfer to the rotating disc under an external force field (laminar flow). Chemical Engineering Science, 1979, 34, 1041-1049.	1.9	49
246	On the convective diffusion of particles under electrical double-layer forces. Journal of Colloid and Interface Science, 1978, 64, 580-583.	5.0	6
247	Transport of particles to a rotating disk surface under an external force field. Journal of Colloid and Interface Science, 1977, 62, 529-541.	5.0	43