Greta Varchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395138/publications.pdf

Version: 2024-02-01

96 2,054 26 39 g-index

107 107 107 2920

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	HSA-Binding Prodrugs-Based Nanoparticles Endowed with Chemo and Photo-Toxicity against Breast Cancer. Cancers, 2022, 14, 877.	1.7	7
2	Two Beats One: Osteosarcoma Therapy with Light-Activated and Chemo-Releasing Keratin Nanoformulation in a Preclinical Mouse Model. Pharmaceutics, 2022, 14, 677.	2.0	7
3	Keratin nanoparticles and photodynamic therapy enhance the anticancer stem cells activity of salinomycin. Materials Science and Engineering C, 2021, 122, 111899.	3.8	8
4	Pheophorbide A and Paclitaxel Bioresponsive Nanoparticles as Double-Punch Platform for Cancer Therapy. Pharmaceutics, 2021, 13, 1130.	2.0	9
5	Nitric Oxide Photo-Donor Hybrids of Ciprofloxacin and Norfloxacin: A Shift in Activity from Antimicrobial to Anticancer Agents. Journal of Medicinal Chemistry, 2021, 64, 11597-11613.	2.9	12
6	A Glance at Drug Delivery Systems and Emerging Immunotherapeutic Strategies for the Treatment of Glioblastoma. Frontiers in Clinical Drug Research Anti-cancer Agents, 2021, , 37-81.	0.2	0
7	Keratin-Based Nanoparticles as Drug Delivery Carriers. Applied Sciences (Switzerland), 2021, 11, 9417.	1.3	21
8	Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. Journal of Experimental and Clinical Cancer Research, 2020, 39, 40.	3.5	37
9	Internalization by PMMA nanoparticle-mediated endocytosis of a survivin molecular beacon as theranostic agent in human cancer cells , 2020, , .		O
10	Keratin nanoparticles co-delivering Docetaxel and Chlorin e6 promote synergic interaction between chemo- and photo-dynamic therapies. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111598.	1.7	27
11	Unprecedented Behavior of $(9 < i > R < i >)$ -9-Hydroxystearic Acid-Loaded Keratin Nanoparticles on Cancer Cell Cycle. Molecular Pharmaceutics, 2019, 16, 931-942.	2.3	14
12	2-Hydroxypropyl-Î ² -cyclodextrin-enhanced pharmacokinetics of cabotegravir from a nanofluidic implant for HIV pre-exposure prophylaxis. Journal of Controlled Release, 2019, 306, 89-96.	4.8	49
13	Silk Fibroin Based Technology for Industrial Biomanufacturing. , 2019, , 409-430.		5
14	Light-Induced Therapies for Prostate Cancer Treatment. Frontiers in Chemistry, 2019, 7, 719.	1.8	26
15	Extraction and Characterization of Keratin from Different Biomasses. Springer Series on Polymer and Composite Materials, 2019, , 35-76.	0.5	18
16	Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Current Medicinal Chemistry, 2019, 26, 6053-6073.	1,2	7
17	Light-Guided Production of Nitric Oxide and Singlet Oxygen for the Multimodal Treatment of Cancer. , 2019, , 337-338.		0
18	Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity. Materials Science and Engineering C, 2018, 90, 476-484.	3.8	48

#	Article	IF	CITATIONS
19	Polymeric nanoparticles promote endocytosis of a survivin molecular beacon: Localization and fate of nanoparticles and beacon in human A549 cells. Life Sciences, 2018, 215, 106-112.	2.0	8
20	Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. International Journal of Molecular Sciences, 2018, 19, 3670.	1.8	34
21	Intercalation of Bioactive Molecules into Nanosized ZnAl Hydrotalcites for Combined Chemo and Photo Cancer Treatment. ACS Applied Nano Materials, 2018, 1, 6387-6397.	2.4	8
22	Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. International Journal of Nanomedicine, 2018, Volume 13, 4847-4867.	3.3	33
23	Mild and Effective Polymerization of Dopamine on Keratin Films for Innovative Photoactivable and Biocompatible Coated Materials. Macromolecular Materials and Engineering, 2018, 303, 1700653.	1.7	10
24	Keratin-hydrotalcites hybrid films for drug delivery applications. European Polymer Journal, 2018, 105, 177-185.	2.6	50
25	Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2018, 186, 169-177.	1.7	22
26	Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells. Biosensors and Bioelectronics, 2017, 88, 15-24.	5.3	26
27	Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures. Life Sciences, 2017, 173, 28-35.	2.0	8
28	1,4-Substituted Triazoles as Nonsteroidal Anti-Androgens for Prostate Cancer Treatment. Journal of Medicinal Chemistry, 2017, 60, 3082-3093.	2.9	44
29	A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study. Investigational New Drugs, 2017, 35, 115-123.	1.2	16
30	Raman spectroscopic characterisation of photo-active keratin doped with Methylene Blue for wound dressings and tissue engineering. Biomedical Spectroscopy and Imaging, 2016, 5, 207-215.	1,2	3
31	Preface: Nitric Oxide and Cancer: Pathological and Therapeutic Aspects. Critical Reviews in Oncogenesis, 2016, 21, v.	0.2	0
32	Silk fibroin film from goldenâ€yellow <scp><i>B</i></scp> <i>ombyx mori</i> is a biocomposite that contains lutein and promotes axonal growth of primary neurons. Biopolymers, 2016, 105, 287-299.	1.2	15
33	Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Advances, 2016, 6, 33910-33918.	1.7	27
34	Development of near-infrared photoactivable phthalocyanine-loaded nanoparticles to kill tumor cells: An improved tool for photodynamic therapy of solid cancers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1885-1897.	1.7	27
35	Molecular Design of Compounds Targeting Histone Methyltransferases. , 2016, , 257-272.		4
36	Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Materials and Design, 2016, 110, 475-484.	3.3	27

#	Article	IF	CITATIONS
37	Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity. Biomacromolecules, 2016, 17, 2882-2890.	2.6	21
38	Novel 20(<i>S</i>)-sulfonylamidine derivatives of camptothecin and the use thereof as a potent antitumor agent: a patent evaluation of WO2015048365 (A1). Expert Opinion on Therapeutic Patents, 2016, 26, 637-642.	2.4	7
39	Highlights of the Fifth International Workshop on Nitric Oxide and Cancer. Critical Reviews in Oncogenesis, 2016, 21, 309-324.	0.2	1
40	Polymethylmethacrylate Nanoparticles as Vehicle for a Molecular Beacon Specific for Survivin mRNA in A549 Cells. , $2015, , .$		0
41	Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment. Nanomedicine, 2015, 10, 3483-3494.	1.7	57
42	TPPS supported on core–shell PMMA nanoparticles: the development of continuous-flow membrane-mediated electrocoagulation as a photocatalyst processing method in aqueous media. Green Chemistry, 2015, 17, 1907-1917.	4.6	15
43	Polymer nanoparticles with electrostatically loaded multicargo for combined cancer phototherapy. Journal of Materials Chemistry B, 2015, 3, 3001-3010.	2.9	18
44	A SMYD3 Smallâ€Molecule Inhibitor Impairing Cancer Cell Growth. Journal of Cellular Physiology, 2015, 230, 2447-2460.	2.0	95
45	Methylene Blue Doped Films of Wool Keratin with Antimicrobial Photodynamic Activity. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17416-17424.	4.0	56
46	Androgen Receptor Targeted Conjugate for Bimodal Photodynamic Therapy of Prostate Cancer in Vitro. Bioconjugate Chemistry, 2015, 26, 1662-1671.	1.8	29
47	Polyenylcyclopropane carboxylic esters with high insecticidal activity. Pest Management Science, 2015, 71, 728-736.	1.7	4
48	Species-dependent binding of new synthesized bicalutamide analogues to albumin by optical biosensor analysis. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 324-332.	1.4	7
49	Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry, 2015, 102, 530-539.	2.6	78
50	Polymethylmethacrylate nanoparticles as carrier of an oligodeoxynucleotide molecular beacon specific for survivin mRNA in A549 human lung adenocarcinoma epithelial cells., 2015,,.		0
51	Elucidating new structural features of the triazole scaffold for the development of mPGES-1 inhibitors. MedChemComm, 2015, 6, 75-79.	3 . 5	12
52	SILK.IT project: Silk Italian Technology for industrial biomanufacturing. Composites Part B: Engineering, 2015, 68, 281-287.	5.9	11
53	Complex Nanostructures Based on Oligonucleotide Optical Switches and Nanoparticles for Intracellular mRNA Sensing and Silencing. Procedia Engineering, 2014, 87, 751-754.	1.2	4
54	Optical biosensor analysis in studying new synthesized bicalutamide analogs binding to androgen receptor. Journal of Pharmaceutical and Biomedical Analysis, 2014, 95, 151-157.	1.4	15

#	Article	IF	CITATIONS
55	A New Avenue toward Androgen Receptor Pan-antagonists: C2 Sterically Hindered Substitution of Hydroxy-propanamides. Journal of Medicinal Chemistry, 2014, 57, 7263-7279.	2.9	53
56	A Small-Molecule Targeting the MicroRNA Binding Domain of Argonaute 2 improves the Retinoic Acid Differentiation Response of the Acute Promyelocytic Leukemia Cell Line NB4. ACS Chemical Biology, 2014, 9, 1674-1679.	1.6	29
57	Thiophene-Based Compounds as Fluorescent Tags to Study Mesenchymal Stem Cell Uptake and Release of Taxanes. Bioconjugate Chemistry, 2014, 25, 649-655.	1.8	15
58	Intracellular Nanosensing and Nanodelivery by PMMA Nanoparticles. Lecture Notes in Electrical Engineering, 2014, , 69-75.	0.3	1
59	Intracellular delivery of molecular beacons by PMMA nanoparticles and carbon nanotubes for mRNA sensing. , $2013, \ldots$		2
60	Coreâ€"shell poly-methylmethacrylate nanoparticles as effective carriers of electrostatically loaded anionic porphyrin. Photochemical and Photobiological Sciences, 2013, 12, 760-769.	1.6	15
61	Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: Effective photoinduced in vitro killing of osteosarcoma. Journal of Controlled Release, 2013, 168, 225-237.	4.8	81
62	Enantiomeric HPLC resolution and absolute stereochemistry assignment of a new poligamain derivative. Journal of Pharmaceutical and Biomedical Analysis, 2013, 75, 118-122.	1.4	2
63	Oligonucleotide switches and nanomaterials for intracellular mRNA sensing. , 2013, , .		1
64	Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model. International Journal of Nanomedicine, 2013, 8, 4247.	3.3	37
65	Effect of Small Molecules Modulating Androgen Receptor (SARMs) in Human Prostate Cancer Models. PLoS ONE, 2013, 8, e62657.	1.1	20
66	Nonsteroidal Androgen Receptor Ligands: Versatile Syntheses and Biological Data. ACS Medicinal Chemistry Letters, 2012, 3, 454-458.	1.3	9
67	Sulfonates-PMMA nanoparticles conjugates: A versatile system for multimodal application. Bioorganic and Medicinal Chemistry, 2012, 20, 6640-6647.	1.4	14
68	Camptothecin and Thiocamptothecin: the Role of Sulfur in Shifting the Hydrolysis Equilibrium towards the Closed Lactone Form. ChemMedChem, 2011, 6, 1706-1714.	1.6	6
69	Structure–Activity Relationship Study of 16 aâ€Thiocamptothecins: an Integrated In Vitro and In Silico Approach. ChemMedChem, 2010, 5, 2006-2015.	1.6	6
70	Semisynthesis, Biological Activity, and Molecular Modeling Studies of C-Ring-Modified Camptothecins. Journal of Medicinal Chemistry, 2009, 52, 1029-1039.	2.9	21
71	Synthesis of α ^{2,2} ,β ³ â€Diamino Acids by Double Stereodifferentiation Aldol Addition of Oxazolidinone Enolates to <i>N</i> à€(<i>tert</i> àêButylsulfinyl) Imines. European Journal of Organic Chemistry, 2008, 2008, 3834-3844.	1.2	9
72	Thiocamptothecin. Journal of Medicinal Chemistry, 2008, 51, 3040-3044.	2.9	19

#	Article	IF	Citations
73	The Role of Polyamine Architecture on the Pharmacological Activity of Open Lactone Camptothecinâ^'Polyamine Conjugates. Bioconjugate Chemistry, 2008, 19, 2270-2279.	1.8	10
74	Synthesis of chiral \hat{l}^2 2,2,3-3-amino-2-hydroxyalkanoates and 3-alkyl-3-hydroxy- \hat{l}^2 -lactams by double asymmetric induction. Tetrahedron, 2007, 63, 7949-7969.	1.0	18
75	The first synthesis of N,O-protected \hat{I}^2 2,2,3,3-isoserines bearing two adjacent quaternary stereogenic centers and their corresponding \hat{I}^2 -lactams. Tetrahedron Letters, 2007, 48, 5081-5085.	0.7	17
76	Stereoselective One-Pot Synthesis of Constrained N,O-Orthogonally ProtectedC-Glycosyl Norstatines [C(1â€)-Aminoglycosyl-1,3-dioxolan-4-ones]. Journal of Organic Chemistry, 2006, 71, 6785-6795.	1.7	28
77	Synthesis of 7- and 10-spermine conjugates of paclitaxel and 10-deacetyl-paclitaxel as potential prodrugs. Tetrahedron Letters, 2006, 47, 2667-2670.	0.7	17
78	Synthesis of Heterocycles Through Hydrosilylation, Silylformylation, Silylcarbocyclization and Cyclohydrocarbonylation Reactions. Current Organic Chemistry, 2006, 10, 1341-1362.	0.9	49
79	Synthesis of Deserpidine from Reserpine. Journal of Natural Products, 2005, 68, 1629-1631.	1.5	18
80	Direct Preparation of Polyfunctional Amino-Substituted Arylmagnesium Reagents via an Iodine—Magnesium Exchange Reaction ChemInform, 2003, 34, no.	0.1	0
81	Concise and Stereocontrolled Synthesis of Pseudo-C2-symmetric Diamino Alcohols and Triamines for Use in HIV Protease Inhibitors. Journal of Organic Chemistry, 2003, 68, 1418-1425.	1.7	21
82	Direct preparation of polyfunctional amino-substituted arylmagnesium reagents via an iodine–magnesium exchange reaction. Chemical Communications, 2003, , 396-397.	2.2	18
83	Synthesis and reactivity of achiral and of a novel planar chiral thioferrocenoylsilanes. Journal of Organometallic Chemistry, 2001, 637-639, 407-417.	0.8	7
84	Rapid microwave-assisted deprotection of N-Cbz and N-Bn derivatives. Tetrahedron Letters, 2001, 42, 5191-5194.	0.7	56
85	Preparation of Functionalized Magnesiated Aniline Derivatives. Synlett, 2001, 2001, 0477-0480.	1.0	34
86	Diastereoselective Synthesis of Diamino 1,2-Diols from Homochiral α-Aminoacylsilanes. Synlett, 2001, 2001, 0995-0998.	1.0	2
87	One Pot Synthesis of New Î ² -Lactams Containing the Ferrocene Moiety. Synlett, 2001, 2001, 1092-1096.	1.0	25
88	New Polyfunctional Magnesium Reagents for Organic Synthesis. Chemistry - A European Journal, 2000, 6, 767-770.	1.7	100
89	Silylcupration of acylimidazolides: a new synthesis of \hat{l}_{\pm} -aminoacylsilanes and their synthetic applications. Polyhedron, 2000, 19, 529-531.	1.0	8
90	Copper Catalyzed Conjugate Addition of Highly Functionalized Arylmagnesium Compounds to Enones. Tetrahedron, 2000, 56, 2727-2731.	1.0	90

#	Article	IF	CITATION
91	Extremely facile formation and high reactivity of new thioacylsilanes containing the ferrocene moiety. Tetrahedron Letters, 1999, 40, 6473-6476.	0.7	26
92	Synthesis of Enantiopure \hat{l}^2 - and \hat{l}^3 -Amino Alcohols from Homochiral \hat{l} and \hat{l}^2 -Aminoacylsilanes as Stable Synthetic Equivalents of \hat{l} and \hat{l}^2 -Amino Aldehydes. European Journal of Organic Chemistry, 1999, 1999, 437-445.	1.2	19
93	Stereoselective Three-Carbon and Two-Carbon Elongation of the Carbon Chain inN-Boc-Protected \hat{l}_{\pm} -Aminoacylsilanes: \hat{A} An Entry to Functionalized \hat{l}^2 -Amino Alcohols and to Statine Analogues. Journal of Organic Chemistry, 1999, 64, 8008-8013.	1.7	36
94	New chiral allylaminosilanes and their use in asymmetric Sakurai reactions. Tetrahedron: Asymmetry, 1998, 9, 2979-2981.	1.8	9
95	A Convenient Conversion of $\hat{l}\pm$ -Aminoacids into NH-Boc Protected $\hat{l}\pm$ -Aminoketones via Imidazolides. Synlett, 1998, 1998, 1013-1015.	1.0	18
96	Intracellular sensing by a survivin molecular beacon coupled to PMMA nanoparticles in human cancer cells. , 0, , .		0