
Louis McCartney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Verification of a 3D analytical model of multilayered piezoelectric systems using finite element analysis. Journal of Applied Physics, 2019, 125, 184503.	2.5	3
2	Theory of variational stress transfer in general symmetric composite laminates containing non-uniformly spaced ply cracks. Composites Part A: Applied Science and Manufacturing, 2018, 107, 374-386.	7.6	19
3	Comparison of Variational and Generalized Plane Strain approaches for matrix cracking in general symmetric laminates. International Journal of Damage Mechanics, 2018, 27, 507-540.	4.2	22
4	Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films. APL Materials, 2015, 3, .	5.1	15
5	Analytical Methods of Predicting Performance of Composite Materials. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2015, , 191-254.	0.6	2
6	Methods for determining piezoelectric properties of thin epitaxial films: Theoretical foundations. Journal of Applied Physics, 2014, 116, .	2.5	15
7	Energy methods for modelling damage in laminates. Journal of Composite Materials, 2013, 47, 2613-2640.	2.4	22
8	Derivations of energy-based modelling for ply cracking in general symmetric laminates. Journal of Composite Materials, 2013, 47, 2641-2673.	2.4	20
9	Energy-based delamination theory for biaxial loading in the presence of thermal stresses. Composites Science and Technology, 2012, 72, 1753-1766.	7.8	7
10	A novel method of determining residual stress distributions in plates using the incremental slitting technique. Journal of Strain Analysis for Engineering Design, 2011, 46, 280-297.	1.8	9
11	Modeling nonlinear viscoelasticity in polymers for design using finite element analysis. Polymer Engineering and Science, 2011, 51, 2210-2219.	3.1	4
12	Maxwell's far-field methodology predicting elastic properties of multiphase composites reinforced with aligned transversely isotropic spheroids. Philosophical Magazine, 2010, 90, 4175-4207.	1.6	62
13	A collection of papers on Materials Science to celebrate the 80 th birthday of Professor Anthony Kelly, CBE, FRS. Philosophical Magazine, 2010, 90, 4075-4080.	1.6	0
14	Modelling long term deformation behaviour of polymers for finite element analysis. Plastics, Rubber and Composites, 2009, 38, 433-443.	2.0	4
15	BEM analysis of damage progress in 0/90 laminates. Engineering Analysis With Boundary Elements, 2009, 33, 762-769.	3.7	8
16	Energy methods for fatigue damage modelling of laminates. Composites Science and Technology, 2008, 68, 2601-2615.	7.8	20
17	A software tool for lifetime prediction of thermal barrier coating systems. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 556-565.	1.5	18
18	Stress state characterization of delamination cracks in [0/90] symmetric laminates by BEM. International lournal of Solids and Structures, 2008, 45, 1632-1662.	2.7	27

LOUIS MCCARTNEY

#	Article	IF	CITATIONS
19	Experimental determination of the magnetoelectric coupling coefficient via piezoelectric measurements. Measurement Science and Technology, 2008, 19, 045106.	2.6	32
20	Multiscale Modeling of Composites Using Analytical Methods. , 2008, , 271-316.		3
21	Maxwell's far-field methodology applied to the prediction of properties of multi-phase isotropic particulate composites. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 423-446.	2.1	64
22	Effective thermal and elastic properties of [+Î∫â~'Î]s laminates. Composites Science and Technology, 2007, 67, 646-661.	7.8	21
23	A physics-based life prediction methodology for thermal barrier coating systems. Acta Materialia, 2007, 55, 1491-1503.	7.9	116
24	A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters. Corrosion Science, 2006, 48, 2084-2105.	6.6	119
25	Composite materials of controlled thermal expansion. Composites Science and Technology, 2006, 66, 154-159.	7.8	47
26	Effect of Off – Axis Matrix Cracking on Stiffness of Symmetric Angle-Ply Composite Laminates. International Journal of Fracture, 2006, 139, 529-536.	2.2	23
27	Modelling of the evolution of stress corrosion cracks from corrosion pits. Scripta Materialia, 2006, 54, 575-578.	5.2	59
28	Prediction of the reflected spectra from chirped fibre Bragg gratings embedded within cracked crossply laminates. Measurement Science and Technology, 2006, 17, 1609-1614.	2.6	19
29	Energy-based prediction of failure in general symmetric laminates. Engineering Fracture Mechanics, 2005, 72, 909-930.	4.3	24
30	Controlling thermal expansion to obtain negative expansivity using laminated composites. Composites Science and Technology, 2005, 65, 47-59.	7.8	33
31	Prediction of dislocation formation in epitaxial multilayers subject to in-plane loading. Philosophical Magazine, 2005, 85, 1575-1610.	1.6	Ο
32	Energy-based prediction of progressive ply cracking and strength of general symmetric laminates using an homogenisation method. Composites Part A: Applied Science and Manufacturing, 2005, 36, 119-128.	7.6	20
33	Physically based damage models for laminated composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2003, 217, 163-199.	1.1	5
34	Prediction of ply crack formation and failure in laminates. Composites Science and Technology, 2002, 62, 1619-1631.	7.8	38
35	Predicting the effect of non-uniform ply cracking on the thermoelastic properties of cross-ply laminates. Composites Science and Technology, 2002, 62, 1841-1856.	7.8	57
36	Modelling Failure Mechanisms in Laminated Composites. Solid Mechanics and Its Applications, 2002, , 31-40.	0.2	0

LOUIS MCCARTNEY

#	Article	IF	CITATIONS
37	Comparison of models for transverse ply cracks in composite laminates. Composites Science and Technology, 2000, 60, 2347-2359.	7.8	73
38	Model to predict effects of triaxial loading on ply cracking in general symmetric laminates. Composites Science and Technology, 2000, 60, 2255-2279.	7.8	120
39	PREDICTING TRANSVERSE CRACK FORMATION IN CROSS-PLY LAMINATES. Composites Science and Technology, 1998, 58, 1069-1081.	7.8	139
40	The prediction of cracking in biaxially loaded cross-ply laminates having brittle matrices. Composites, 1993, 24, 84-92.	0.7	34
41	Theory of stress transfer in a 0°—90°—0° cross-ply laminate containing a parallel array of transverse cracks. Journal of the Mechanics and Physics of Solids, 1992, 40, 27-68.	4.8	194
42	Mechanical property test procedures for metal matrix composites. Materials Science and Technology, 1989, 5, 105-117.	1.6	22
43	Crack-growth predictions for viscoelastic materials exhibiting non-uniform craze deformation. International Journal of Fracture, 1988, 37, 279-301.	2.2	13
44	A new boundary element technique for solving plane problems of linear elasticity: improved theory and an application to fracture mechanics. Applied Mathematical Modelling, 1984, 8, 243-250.	4.2	2
45	Measurement and analysis of slow crack growth in a viscoelastic material. Polymer Testing, 1984, 4, 253-272.	4.8	2
46	Viscoelastic crack growth. International Journal of Fracture, 1983, 23, R11-R13.	2.2	9
47	General solution of a certain mixed boundary value crack problem. International Journal of Engineering Science, 1983, 21, 131-142.	5.0	3
48	A new boundary element technique for solving plane problems of linear elasticity: 1. Theory. Applied Mathematical Modelling, 1983, 7, 441-451.	4.2	3
49	Statistical Theory of the Strength of Fiber Bundles. Journal of Applied Mechanics, Transactions ASME, 1983, 50, 601-608.	2.2	78
50	Time-dependent strength of large bundles of fibres loaded in corrosive environments. Fibre Science and Technology, 1982, 16, 95-109.	0.2	4
51	On the energy balance approach to fracture in creeping materials. International Journal of Fracture, 1982, 19, 99-113.	2.2	6
52	Statistics for static strength of fibre bundles. Metal Science, 1981, 15, 471-474.	0.7	4
53	Response to discussion concerning kinetic criteria for crack in viscoelastic materials. International Journal of Fracture, 1981, 17, R161-R161.	2.2	7
54	Constitutive relations describing creep deformation for multi-axial time-dependent stress states. Journal of the Mechanics and Physics of Solids, 1981, 29, 13-33.	4.8	5

LOUIS MCCARTNEY

#	Article	IF	CITATIONS
55	Response: Further discussion of ?crack growth laws for a variety of visco-elastic solids using energy and COD fracture criteria,?. International Journal of Fracture, 1980, 16, R109-R110.	2.2	1
56	Discussion: "A rate-dependent criterion for crack growth," by R. M. christensen. International Journal of Fracture, 1980, 16, R229-R232.	2.2	10
57	Derivation of crack growth laws for linear viscoelastic solids based upon the concept of a fracture process zone. International Journal of Fracture, 1980, 16, 375-382.	2.2	11
58	Response: Discussion of ?Crack growth laws for a variety of visco-elastic solids using energy and COD fracture criteria,?. International Journal of Fracture, 1980, 16, R27-R30.	2.2	2
59	Discussion: ?The use of the J-integral in thermal stress crack problems,?. International Journal of Fracture, 1979, 15, R217-R221.	2.2	25
60	Extensions of a statistical approach to fracture. International Journal of Fracture, 1979, 15, 477-487.	2.2	44
61	A note on closure during fatigue crack growth. International Journal of Fracture, 1979, 15, R21-R24.	2.2	7
62	CAN SAFETY FACTORS BE REDUCED SAFELY WHEN DESIGNING AGAINST FATIGUE?. Fatigue and Fracture of Engineering Materials and Structures, 1979, 2, 387-400.	3.4	15
63	A new approach to Weibull's statistical theory of brittle fracture. International Journal of Fracture, 1979, 15, 365-375.	2.2	55
64	Theory of stable crack growth in an elastic-perfectly plastic material. International Journal of Fracture, 1978, 14, 429-438.	2.2	9
65	Crack propagation in linear viscoelastic solids: some new results. International Journal of Fracture, 1978, 14, 547-554.	2.2	23
66	Prediction of fatigue crack growth rates: theory, mechanisms, and experimental results. Metal Science, 1977, 11, 351-361.	0.7	60
67	A numerical method of processing fatigue crack propagation data. Engineering Fracture Mechanics, 1977, 9, 265-272.	4.3	8
68	A new method of analysing fatigue crack propagation data. Engineering Fracture Mechanics, 1977, 9, 273-290.	4.3	8
69	Cavities under stress at high temperatures. Acta Metallurgica, 1977, 25, 221-230.	2.1	26
70	Crack propagation, resulting from a monotonic increasing applied stress, in a linear viscoelastic material. International Journal of Fracture, 1977, 13, 641-654.	2.2	47
71	No time—gentlemen please!. Philosophical Magazine and Journal, 1976, 33, 689-695.	1.7	11
72	Strain/Time Relations Describing Creep. Journal of Mechanical Engineering Science, 1976, 18, 39-45.	0.2	2

#	Article	IF	CITATIONS
73	The effect of periodic-random loading on fatigue crack growth. International Journal of Fracture, 1976, 12, 273-288.	2.2	9
74	Vacancy diffusion in a crystal. Acta Metallurgica, 1975, 23, 769-777.	2.1	2
75	Creep under Varying Load. Metal Science J, 1973, 7, 196-204.	0.9	13