Prof LÃ;szló Poppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395035/publications.pdf

Version: 2024-02-01

146 papers 2,888 citations

168829 31 h-index 299063 42 g-index

156 all docs

156 docs citations

156 times ranked 2550 citing authors

#	Article	IF	CITATIONS
1	Immobilization of the Aspartate Ammoniaâ€Lyase from <i>Pseudomonas fluorescens</i> R124 on Magnetic Nanoparticles: Characterization and Kinetics. ChemBioChem, 2022, 23, .	1.3	9
2	Crossâ€Linked Enzymeâ€Adhered Nanoparticles (CLEANs) for Continuousâ€Flow Bioproduction. ChemSusChem, 2022, 15, .	3.6	6
3	A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids. Catalysis Today, 2021, 366, 185-194.	2.2	12
4	Substrate Tunnel Engineering Aided by X-ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes. ACS Catalysis, 2021, 11, 4538-4549.	5.5	21
5	Magnetically Agitated Nanoparticle-Based Batch Reactors for Biocatalysis with Immobilized Aspartate Ammonia-Lyase. Catalysts, 2021, 11, 483.	1.6	7
6	Characterization of Yeast Strains with Ketoreductase Activity for Bioreduction of Ketones. Periodica Polytechnica: Chemical Engineering, 2021, 65, 299-307.	0.5	2
7	Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies. Pharmaceutics, 2021, 13, 972.	2.0	3
8	Application of supported lanthanum catalysts in the hydrogenation of nitriles. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 687.	0.8	2
9	Entrapment of Phenylalanine Ammonia-Lyase in Nanofibrous Polylactic Acid Matrices by Emulsion Electrospinning. Catalysts, 2021, 11, 1149.	1.6	6
10	Efficient Synthesis of Pharmaceutically Relevant Prochiral Heterocyclic Aminoketones. Periodica Polytechnica: Chemical Engineering, 2021, 65, 177-182.	0.5	1
11	Lipase on carbon nanotubes $\hat{a}\in$ an active, selective, stable and easy-to-optimize nanobiocatalyst for kinetic resolutions. Reaction Chemistry and Engineering, 2021, 6, 2391-2399.	1.9	2
12	Transaminase Catalysis for Enantiopure Saturated Heterocycles as Potential Drug Scaffolds. Catalysts, 2021, 11, 1501.	1.6	1
13	Controlled degradation of poly- $\hat{\mu}$ -caprolactone for resorbable scaffolds. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110678.	2.5	14
14	Design and application of a bi-functional redox biocatalyst through covalent co-immobilization of ene-reductase and glucose dehydrogenase. Journal of Biotechnology, 2020, 323, 246-253.	1.9	13
15	Magnetic Nanoparticles with Dual Surface Functions—Efficient Carriers for Metalloporphyrin-Catalyzed Drug Metabolite Synthesis in Batch and Continuous-Flow Reactors. Nanomaterials, 2020, 10, 2329.	1.9	6
16	Transaminase-mediated synthesis of enantiopure drug-like 1-(3′,4′-disubstituted phenyl)propan-2-amines. RSC Advances, 2020, 10, 40894-40903.	1.7	4
17	Novel combination of non-invasive morphological and solid-state characterisation of drug-loaded core-shell electrospun fibres. International Journal of Pharmaceutics, 2020, 587, 119706.	2.6	12
18	Polymer Nanofiber Deposition in Lab-on-a-Chip Devices By Electrospinning. , 2020, , .		1

#	Article	IF	CITATIONS
19	Conservation of the Biocatalytic Activity of Whole Yeast Cells by Supported Sol–ÂGel Entrapment for Efficient AcyloinÂCondensation. Periodica Polytechnica: Chemical Engineering, 2020, 64, 153-161.	0.5	4
20	Mapping the Hydrophobic Substrate Binding Site of Phenylalanine Ammonia-Lyase from <i>Petroselinum crispum </i> . ACS Catalysis, 2019, 9, 8825-8834.	5.5	28
21	Liver-on-a-Chipâ€'Magnetic Nanoparticle Bound Synthetic Metalloporphyrin-Catalyzed Biomimetic Oxidation of a Drug in a Magnechip Reactor. Micromachines, 2019, 10, 668.	1.4	10
22	Exploring the substrate scope of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Scientific Reports, 2019, 9, 647.	1.6	14
23	Immobilized Whole-Cell Transaminase Biocatalysts for Continuous-Flow Kinetic Resolution of Amines. Catalysts, 2019, 9, 438.	1.6	33
24	Green synthesis and $\langle i \rangle$ in situ $\langle i \rangle$ immobilization of gold nanoparticles and their application for the reduction of $\langle i \rangle$ p $\langle i \rangle$ -nitrophenol in continuous-flow mode. RSC Advances, 2019, 9, 9193-9197.	1.7	9
25	Composite beads of silica gel, alginate and poly(aspartic acid) for the immobilization of a lipase enzyme. EXPRESS Polymer Letters, 2019, 13, 512-523.	1.1	14
26	How to Turn Yeast Cells into a Sustainable and Switchable Biocatalyst? On-Demand Catalysis of Ketone Bioreduction or Acyloin Condensation. ACS Sustainable Chemistry and Engineering, 2019, 7, 19375-19383.	3.2	11
27	"Fishing and Huntingâ€â€"Selective Immobilization of a Recombinant Phenylalanine Ammonia-Lyase from Fermentation Media. Molecules, 2019, 24, 4146.	1.7	13
28	Bioactive 3D Structure of Phenylalanine Ammonia-Lyase Reveal Key Insights into Ligand Binding Dynamics. Biophysical Journal, 2018, 114, 406a.	0.2	9
29	Covalently immobilized Trp60Cys mutant of ω-transaminase from Chromobacterium violaceum for kinetic resolution of racemic amines in batch and continuous-flow modes. Biochemical Engineering Journal, 2018, 132, 270-278.	1.8	29
30	<i>Pseudomonas fluorescens</i> Strain R124 Encodes Three Different MIO Enzymes. ChemBioChem, 2018, 19, 411-418.	1.3	11
31	Tailored Mutants of Phenylalanine Ammoniaâ€Lyase from <i>Petroselinum crispum</i> for the Synthesis of Bulky <scp>l</scp> â€and <scp>d</scp> â€Arylalanines. ChemCatChem, 2018, 10, 2627-2633.	1.8	18
32	Chemoenzymatic Dynamic Kinetic Resolution of Amines in Fully Continuous-Flow Mode. Organic Letters, 2018, 20, 8052-8056.	2.4	21
33	Optimization of 2-alkoxyacetates as acylating agent for enzymatic kinetic resolution of chiral amines. Tetrahedron, 2018, 74, 3663-3670.	1.0	8
34	Coâ€immobilized Whole Cells with ωâ€Transaminase and Ketoreductase Activities for Continuousâ€Flow Cascade Reactions. ChemBioChem, 2018, 19, 1845-1848.	1.3	27
35	Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Molecular Pharmaceutics, 2018, 15, 4214-4225.	2.3	24
36	Click reaction-aided enzymatic kinetic resolution of secondary alcohols. Reaction Chemistry and Engineering, 2018, 3, 790-798.	1.9	4

#	Article	IF	Citations
37	Smart Nanoparticles for Selective Immobilization of Acid Phosphatases. ChemCatChem, 2018, 10, 3490-3499.	1.8	16
38	A szintetikus kémiától az enzimmérnökségig – A Bioorganikus Kémiai Kutatócsoport bemutatás Magyar Kemiai Folyoirat, Kemiai Kozlemenyek, 2018, 124, 93-100.	a. _{0.0}	0
39	Structural snapshots of multiple enzyme–ligand complexes pave the road for semi-rational enzyme engineering. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e37-e38.	0.0	0
40	In-situ measurement of magnetic nanoparticle quantity in a microfluidic device. Microsystem Technologies, 2017, 23, 3979-3990.	1.2	17
41	A Methylidene Group in the Phosphonic Acid Analogue of Phenylalanine Reverses the Enantiopreference of Binding to Phenylalanine Ammonia‣yases. Advanced Synthesis and Catalysis, 2017, 359, 2109-2120.	2.1	9
42	Expanding the substrate scope of phenylalanine ammonia-lyase from <i>Petroselinum crispum </i> towards styrylalanines. Organic and Biomolecular Chemistry, 2017, 15, 3717-3727.	1.5	28
43	Immobilization engineering – How to design advanced sol–gel systems for biocatalysis?. Green Chemistry, 2017, 19, 3927-3937.	4.6	44
44	Aminated Single-walled Carbon Nanotubes as Carrier for Covalent Immobilization of Phenylalanine Ammonia-lyase. Periodica Polytechnica: Chemical Engineering, 2017, 61, 59.	0.5	13
45	A novel phenylalanine ammonia-lyase from kangiella koreensis. Studia Universitatis Babes-Bolyai Chemia, 2017, 62, 293-308.	0.1	7
46	Tailoring the Spacer Arm for Covalent Immobilization of Candida antarctica Lipase Bâ€"Thermal Stabilization by Bisepoxide-Activated Aminoalkyl Resins in Continuous-Flow Reactors. Molecules, 2016, 21, 767.	1.7	28
47	Microfluidic Multiple Chamber Chip Reactor Filled with Enzyme-Coated Magnetic Nanoparticles. , 2016,		1
48	Microfluidic multiple cell chip reactor filled with enzyme-coated magnetic nanoparticles — An efficient and flexible novel tool for enzyme catalyzed biotransformations. Journal of Flow Chemistry, 2016, 6, 43-52.	1.2	38
49	Wickerhamomyces subpelliculosus as whole-cell biocatalyst for stereoselective bioreduction of ketones. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 206-214.	1.8	6
50	Creating an Efficient Methanolâ€Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel. ChemSusChem, 2016, 9, 3161-3170.	3.6	27
51	Bioimprinted lipases in PVA nanofibers as efficient immobilized biocatalysts. Tetrahedron, 2016, 72, 7335-7342.	1.0	38
52	Influence of the aromatic moiety in \hat{l}_{\pm} - and \hat{l}^2 -arylalanines on their biotransformation with phenylalanine 2,3-aminomutase from Pantoea agglomerans. RSC Advances, 2016, 6, 56412-56420.	1.7	6
53	A Continuousâ€Flow Cascade Reactor System for Subtilisin A―Catalyzed Dynamic Kinetic Resolution of <i>N</i> à€ <i>tert</i> â€Mutyloxycarbonylphenylalanine Ethyl Thioester with Benzylamine. Advanced Synthesis and Catalysis, 2016, 358, 1608-1617.	2.1	32
54	Isopropyl 2-ethoxyacetateâ€"an efficient acylating agent for lipase-catalyzed kinetic resolution of amines in batch and continuous-flow modes. Tetrahedron, 2016, 72, 7249-7255.	1.0	21

#	Article	IF	Citations
55	Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess and Biosystems Engineering, 2016, 39, 449-459.	1.7	38
56	Stereochemistry and Stereoselective Synthesis: An Introduction. , 2016, , .		7
57	Phenylalanine Ammoniaâ€Lyaseâ€Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. ChemBioChem, 2015, 16, 2283-2288.	1.3	46
58	From Synthetic Chemistry and Stereoselective Biotransformations to Enzyme Biochemistry – The Bioorganic Chemistry Group at the Budapest University of Technology and Economics. Periodica Polytechnica: Chemical Engineering, 2015, 59, 59-71.	0.5	3
59	Copper(II) Fluoride a New Efficient Promoter of Chan-Lam-Evans Coupling. Periodica Polytechnica: Chemical Engineering, 2015, 59, 243-246.	0.5	1
60	Chemoenzymatic route to Tyrphostins involving lipase-catalyzed kinetic resolution of 1-phenylethanamine with alkyl cyanoacetates as novel acylating agents. Tetrahedron: Asymmetry, 2015, 26, 644-649.	1.8	10
61	Immobilization of Phenylalanine Ammoniaâ€Lyase on Singleâ€Walled Carbon Nanotubes for Stereoselective Biotransformations in Batch and Continuousâ€Flow Modes. ChemCatChem, 2015, 7, 1122-1128.	1.8	43
62	Synthesis of enantiopure l-(5-phenylfuran-2-yl)alanines by a sequential multienzyme process. Tetrahedron: Asymmetry, 2015, 26, 1095-1101.	1.8	5
63	Additives Enhancing the Catalytic Properties of Lipase from Burkholderia cepacia Immobilized on Mixed-Function-Grafted Mesoporous Silica Gel. Molecules, 2014, 19, 9818-9837.	1.7	37
64	Bisepoxide Cross‣inked Enzyme Aggregatesâ€"New Immobilized Biocatalysts for Selective Biotransformations. ChemCatChem, 2014, 6, 1463-1469.	1.8	14
65	Lipase-Catalyzed Kinetic Resolution of 1-(2-Hydroxycyclohexyl)Indoles in Batch and Continuous-Flow Systems. Journal of Flow Chemistry, 2014, 4, 125-134.	1.2	10
66	Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus. PLoS ONE, 2014, 9, e85943.	1.1	24
67	Hydrophobic adsorption and covalent immobilization of Candida antarctica lipase B on mixed-function-grafted silica gel supports for continuous-flow biotransformations. Process Biochemistry, 2013, 48, 1039-1047.	1.8	41
68	Chemoenzymatic synthesis of both enantiomers of 3-hydroxy- and 3-amino-3-phenylpropanoic acid. Tetrahedron: Asymmetry, 2013, 24, 1389-1394.	1.8	7
69	How the mode of Candida antarctica lipase B immobilization affects the continuous-flow kinetic resolution of racemic amines at various temperatures. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 119-125.	1.8	37
70	Immobilization of lipases from Rhizomucor miehei and Thermomyces lanuginosus by adsorption on variously grafted silica gels. Periodica Polytechnica: Chemical Engineering, 2013, 57, 37.	0.5	3
71	Preparation of Unnatural Amino Acids with Ammonia-Lyases and 2,3-Aminomutases. Methods in Molecular Biology, 2012, 794, 3-19.	0.4	26
72	Mechanism of the Tyrosine Ammonia Lyase Reactionâ€"Tandem Nucleophilic and Electrophilic Enhancement by a Proton Transfer. Chemistry - A European Journal, 2012, 18, 7793-7802.	1.7	37

#	Article	IF	CITATIONS
73	Disubstituted dialkoxysilane precursors in binary and ternary sol–gel systems for lipase immobilization. Process Biochemistry, 2012, 47, 428-434.	1.8	19
74	Lipase mediated sequential resolution of aromatic \hat{l}^2 -hydroxy esters using fatty acid derivatives. Tetrahedron: Asymmetry, 2011, 22, 1672-1679.	1.8	16
75	Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. Journal of Molecular Modeling, 2011, 17, 1551-1563.	0.8	15
76	Novel Solâ€Gel Lipases by Designed Bioimprinting for Continuousâ€Flow Kinetic Resolutions. Advanced Synthesis and Catalysis, 2011, 353, 2481-2491.	2.1	38
77	Fine-tuning the second generation sol–gel lipase immobilization with ternary alkoxysilane precursor systems. Process Biochemistry, 2011, 46, 52-58.	1.8	42
78	Lipase-catalyzed kinetic resolutions of racemic 1-(10-ethyl-10H-phenothiazin-1,2, and 4-yl)ethanols and their acetates. Tetrahedron: Asymmetry, 2011, 22, 916-923.	1.8	15
79	Reductive amination of ketones: novel one-step transfer hydrogenations in batch and continuous-flow mode. Tetrahedron Letters, 2011, 52, 1310-1312.	0.7	35
80	Lipase-catalyzed kinetic resolution of 2-methylene-substituted cycloalkanols in batch and continuous-flow modes. Process Biochemistry, 2010, 45, 859-865.	1.8	37
81	Integrated enzymatic production of specific structured lipid and phytosterol ester compositions. Process Biochemistry, 2010, 45, 1245-1250.	1.8	19
82	Resolution of racemic trans-1,2-cyclohexanediol with tartaric acid. Tetrahedron: Asymmetry, 2008, 19, 1587-1592.	1.8	14
83	Enantiomer selective acylation of racemic alcohols by lipases in continuous-flow bioreactors. Tetrahedron: Asymmetry, 2008, 19, 237-246.	1.8	87
84	Lipase-catalyzed kinetic resolution of racemic 1-heteroarylethanolsâ€"experimental and QM/MM study. Tetrahedron: Asymmetry, 2008, 19, 1844-1852.	1.8	27
85	Lipase-catalyzed kinetic resolution of 4-aryl- and 4-heteroarylbut-3-en-2-ols. Arkivoc, 2008, 2008, 54-65.	0.3	3
86	Synthesis and enantioselective rearrangement of (Z)-4-triphenylmethoxy-2,3-epoxybutan-1-ol enantiomers. Chirality, 2007, 19, 197-202.	1.3	10
87	Convenient enzymatic preparation of conjugated linoleic acid alkyl esters with C6–C22 alcohols. Journal of Molecular Catalysis B: Enzymatic, 2007, 45, 45-49.	1.8	6
88	Production and Application of Novel Sterol Esterases from Aspergillus Strains by Solid State Fermentation. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 907-915.	0.8	11
89	The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases. FEBS Journal, 2006, 273, 1004-1019.	2.2	47
90	Lipase-catalyzed enantioselective acylation of 3-benzyloxypropane-1,2-diol in supercritical carbon dioxide. Biochemical Engineering Journal, 2006, 28, 275-280.	1.8	19

#	Article	IF	CITATIONS
91	Lipase mediated enantiomer and diastereomer separation of 2,2 $\hat{a}\in^2$ -[1,2- and 1,3-phenylenebis(oxy)]dicyclohexanols. Tetrahedron: Asymmetry, 2006, 17, 2377-2385.	1.8	5
92	Stereoselective production of (S)-1-aralkyl- and 1-arylethanols by freshly harvested and lyophilized yeast cells. Tetrahedron: Asymmetry, 2006, 17, 268-274.	1.8	39
93	Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 141-148.	1.8	47
94	Production of Cellullolytic Enzymes by a Newly Isolated, Trichoderma sp. FETL c3-2 via Solid State Fermentation Grown on Sugar Cane Baggase: Palm Kernel Cake as Substrates. Pakistan Journal of Biological Sciences, 2006, 9, 1430-1437.	0.2	19
95	Efficient, scalable kinetic resolution of cis-4-benzyloxy-2,3-epoxybutanol. Tetrahedron: Asymmetry, 2005, 16, 3841-3847.	1.8	10
96	The base-catalyzed, low-temperature interesterification mechanism revisited. European Journal of Lipid Science and Technology, 2005, 107, 912-921.	1.0	28
97	Friedel-Crafts-Type Mechanism for the Enzymatic Elimination of Ammonia from Histidine and Phenylalanine. Angewandte Chemie - International Edition, 2005, 44, 3668-3688.	7.2	120
98	Friedelâ€"Crafts-Type Mechanism for the Enzymatic Elimination of Ammonia from Histidine and Phenylalanine. ChemInform, 2005, 36, no.	0.1	0
99	Influence of precursors and additives on microbial lipases stabilized by sol-gel entrapment. Biocatalysis and Biotransformation, 2005, 23, 251-260.	1.1	13
100	Predicted 3D-structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus). Neuroscience Letters, 2005, 376, 76-80.	1.0	10
101	Chemoenzymatic preparation of all the stereoisomers of 2-(1-hydroxyethyl)- and 2,6-bis(1-hydroxyethyl)pyridines and their acetates. Tetrahedron: Asymmetry, 2004, 15, 2483-2490.	1.8	8
102	Chemistry of Indoles Carrying a Basic Function. Part IX. Unexpected Cyclizations of Diketones Derived from Uhle's Ketone. Heterocycles, 2004, 64, 153.	0.4	3
103	Comparative study on separation of diastereomers by HPLC. Chromatographia, 2003, 57, 147-153.	0.7	14
104	Mechanistic Investigation of Phenylalanine Ammonia Lyase by UsingN-Methylated Phenylalanines. Helvetica Chimica Acta, 2003, 86, 3601-3612.	1.0	8
105	Novel Hydrolases from Thermophilic Filamentous Fungi for Enantiomerically and Enantiotopically Selective Biotransformations. Advanced Synthesis and Catalysis, 2003, 345, 811-818.	2.1	13
106	Chemo-enzymatic Preparation of Hydroxymethyl Ketones ChemInform, 2003, 34, no.	0.1	0
107	Optically Active 1-(Benzofuran-2-yl)ethanols and Ethane-1,2-diols by Enantiotopic Selective Bioreductions ChemInform, 2003, 34, no.	0.1	0
108	Preparation of Novel Phenylfuran-Based Cyanohydrin Esters: Lipase-Catalyzed Kinetic and Dynamic Resolution ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
109	Optically active 1-(benzofuran-2-yl)ethanols and ethane-1,2-diols by enantiotopic selective bioreductions. Tetrahedron: Asymmetry, 2003, 14, 1495-1501.	1.8	47
110	Preparation of novel phenylfuran-based cyanohydrin esters: lipase-catalysed kinetic and dynamic resolution. Tetrahedron: Asymmetry, 2003, 14, 1895-1904.	1.8	35
111	Kinetic resolution of 1-(benzofuran-2-yl)ethanols by lipase-catalyzed enantiomer selective reactions. Tetrahedron: Asymmetry, 2003, 14, 1943-1949.	1.8	32
112	Kinetic resolution of trans-2-acetoxycycloalkan-1-ols by lipase-catalysed enantiomerically selective acylation. Tetrahedron: Asymmetry, 2003, 14, 2605-2612.	1.8	20
113	Properties and Synthetic Applications of Ammonia-Lyases. Current Organic Chemistry, 2003, 7, 1297-1315.	0.9	25
114	Baker's yeast mediated preparation of (10-alkyl-10H-phenothiazin-3-yl)methanols. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 241-248.	1.8	17
115	Synthesis of optically active 3-substituted-10-alkyl-10H-phenothiazine-5-oxides by enantioselective biotransformations. Tetrahedron: Asymmetry, 2002, 13, 211-221.	1.8	15
116	An active site homology model of phenylalanine ammonia-lyase fromP.â€∫crispum. FEBS Journal, 2002, 269, 3065-3075.	0.2	77
117	Chemo-enzymatic preparation of hydroxymethyl ketones. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2400-2402.	1.3	10
118	Methylidene-imidazolone: a novel electrophile for substrate activation. Current Opinion in Chemical Biology, 2001, 5, 512-524.	2.8	57
119	Characterization of the active site of histidine ammonia-lyase fromPseudomonas putida. FEBS Journal, 2001, 268, 6011-6019.	0.2	53
120	SELECTIVE OXIDATON METHODS FOR PREPARATION OF N-ALKYLPHENOTHIAZINE SULFOXIDES AND SULFONES. Heterocyclic Communications, 2001, 7, .	0.6	11
121	Phenylalanine Ammonia-Lyase: The Use of Its Broad Substrate Specificity for Mechanistic Investigations and Biocatalysisâ€"Synthesis ofL-Arylalanines. Chemistry - A European Journal, 2000, 6, 3386-3390.	1.7	82
122	Elucidation of the coenzyme binding mode of further B12-dependent enzymes using a base-off analogue of coenzyme B12. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 345-350.	1.8	15
123	Lipase-catalyzed enantiotope selective acetylation of 2-acyloxypropane-1,3-diols. Influence of the acyl moiety on the selectivity. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 583-596.	1.8	9
124	Synthesis and Lipase-Catalyzed Enantiotope Selective Acetylation of 2-Benzoyloxy-1,3-propanediol. Synlett, 1999, 1999, 759-761.	1.0	11
125	Baker's yeast mediated reduction of dihydroxyacetone derivatives. Tetrahedron: Asymmetry, 1999, 10, 4017-4028.	1.8	22
126	Ribonucleoside Triphosphate Reductase from Lactobacillus leichmannii: Kinetic Evaluation of a Series of Adenosylcobalamin Competitive Inhibitors, [ï‰-(Adenosin-5′-O-yl)alkyl]cobalamins, Which Mimic the Post Co-C Homolysis Intermediate. Bioorganic Chemistry, 1999, 27, 451-462.	2.0	5

#	Article	IF	CITATIONS
127	(Hydroxyalkyl)cob(III)alamins as Competitive Inhibitors in Coenzyme B12-Dependent Enzymic Reactions:1H-NMR Structure Analysis and Kinetic Studies with Glycerol Dehydratase and Diol Dehydratase. Helvetica Chimica Acta, 1999, 82, 1250-1265.	1.0	5
128	Baker's yeast mediated stereoselective biotransformation of 1-acetoxy-3-aryloxypropan-2-ones. Tetrahedron: Asymmetry, 1998, 9, 271-283.	1.8	42
129	The Behavior of Substrate Analogues and Secondary Deuterium Isotope Effects in the Phenylalanine Ammonia-Lyase Reaction. Archives of Biochemistry and Biophysics, 1998, 359, 1-7.	1.4	45
130	Kinetic Investigations with Inhibitors that Mimic the Postomolysis Intermediate in the Reactions of Coenzyme-B12-Dependent Glycerol Dehydratase and Diol Dehydratase. FEBS Journal, 1997, 245, 398-401.	0.2	12
131	A Base-Off Analogue of Coenzyme-B12 with a Modified Nucleotide Loop. 1H-NMR Structure Analysis and Kinetic Studies with (R)-Methylmalonyl-CoA Mutase, Glycerol Dehydratase, and Diol Dehydratase. FEBS Journal, 1997, 250, 303-307.	0.2	26
132	Synthesis and lipase-catalyzed asymmetric acetylation of 3-hydroxy-2-hydroxymethylpropanal acetals. Tetrahedron: Asymmetry, 1997, 8, 547-557.	1.8	18
133	Kinetic resolution of 2-acylated-1,2-diols by lipase-catalyzed enantiomer selective acylation. Tetrahedron: Asymmetry, 1996, 7, 1437-1448.	1.8	24
134	Convenient Synthesis of Monoprotected 1,2-Diols. Synthetic Communications, 1995, 25, 3993-4000.	1.1	10
135	B12-Dependent Rearrangements: Kinetic Investigations on Methylmalonyl-CoA Mutase. Archives of Biochemistry and Biophysics, 1995, 316, 541-546.	1.4	14
136	Synthesis and Characterization of (5′-Deoxyadenosin-5′-yl)cobalamin (=  Adenosylcobalamin') Anal Mimicking the Transition-State Geometry of Coenzyme-B12-Dependent Rearrangements. Helvetica Chimica Acta, 1993, 76, 2367-2383.	ogues 1.0	16
137	Lipase-catalyzed enantiomer selective hydrolysis of 1,2-diol diacetates. Tetrahedron: Asymmetry, 1993, 4, 2211-2217.	1.8	37
138	Synthesis of Novel HMGâ€CoA Reductase Inhibitors, I. Naphthalene Analogs of Mevinolin. Liebigs Annalen Der Chemie, 1992, 1992, 145-157.	0.8	14
139	Baker's yeast mediated synthesis of (5SR, 9S)-5,9-dimethyl-heptadecane and (5SR, 9S)-5,9-dimethyl pentadecane; the main sex-pheromone components of Leucoptera scitella and Perileucoptera coffeella enriched in 9S-isomers. Tetrahedron Letters, 1991, 32, 2643-2646.	0.7	13
140	Convenient synthetic route to (+)-faranal and (+)-13-norfaranal. Tetrahedron, 1988, 44, 1477-1487.	1.0	39
141	A Convenient Synthesis of (E)-Î ² Farnesene. Synthetic Communications, 1987, 17, 173-179.	1.1	12
142	A convenient synthetic route to (+)-faranal; The trail pheromone of pharaoh's ant. Tetrahedron Letters, 1986, 27, 5769-5772.	0.7	14
143	A Facile Synthesis of Two Isomeric Components of San Jose Scale Pheromone. Synthesis, 1985, 1985, 939-941.	1.2	17
144	Electrospun Nanofibers for Entrapment of Biomolecules. , 0, , .		7

#	Article	IF	CITATIONS
145	Diisopropyl Malonate as Acylating Agent in Kinetic Resolution of Chiral Amines with Lipase B from Candida antarctica. Periodica Polytechnica: Chemical Engineering, 0, , .	0.5	1
146	CHAPTER 15. SynBiocat: Protein Purification, Immobilization and Continuous-flow Processes. RSC Catalysis Series, 0, , 397-430.	0.1	0