Shingo Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394917/publications.pdf

Version: 2024-02-01

	279798	265206
1,817	23	42
citations	h-index	g-index
F 1	F.1	2000
51	51	2080
docs citations	times ranked	citing authors
	citations 51	1,817 23 citations h-index 51 51

#	Article	IF	CITATIONS
1	A fully covered self-expandable metallic stent coated with poly (2-methoxyethyl acrylate) and its derivative: In vitro evaluation of early-stage biliary sludge formation inhibition. Materials Science and Engineering C, 2021, 120, 111386.	7.3	7
2	Periodically Functionalized Linear Polyethylene with Tertiary Amino Groups via Regioselective Ring-Opening Metathesis Polymerization. Macromolecules, 2021, 54, 2862-2872.	4.8	8
3	Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. Coatings, 2021, 11, 461.	2.6	6
4	Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study. ACS Biomaterials Science and Engineering, 2021, 7, 2383-2391.	5. 2	7
5	Poly(tertiary amide acrylate) Copolymers Inspired by Poly(2-oxazoline)s: Their Blood Compatibility and Hydration States. Biomacromolecules, 2021, 22, 2718-2728.	5.4	6
6	Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomaterialia, 2021, 134, 313-324.	8.3	25
7	Effect of pendant groups on the blood compatibility and hydration states of poly(2â€oxazoline)s. Journal of Polymer Science, 2021, 59, 2559-2570.	3.8	7
8	Protein Stabilization Effect of Zwitterionic Osmolyte-bearing Polymer. Chemistry Letters, 2021, 50, 1699-1702.	1.3	7
9	Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Science Advances, 2021, 7, eabi6290.	10.3	36
10	Molecular Dynamics Study on the Water Mobility and Side-Chain Flexibility of Hydrated Poly(ω-methoxyalkyl acrylate)s. ACS Biomaterials Science and Engineering, 2020, 6, 6690-6700.	5.2	10
11	Side-Chain Spacing Control of Derivatives of Poly(2-methoxyethyl acrylate): Impact on Hydration States and Antithrombogenicity. Macromolecules, 2020, 53, 8570-8580.	4.8	22
12	Silsesquioxane/Poly(2-methoxyethyl acrylate) Hybrid with Both Antithrombotic and Endothelial Cell Adhesive Properties. ACS Applied Polymer Materials, 2020, 2, 4790-4801.	4.4	13
13	Elucidating the Feature of Intermediate Water in Hydrated Poly(ω-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement. ACS Biomaterials Science and Engineering, 2020, 6, 3915-3924.	5.2	17
14	Blood-Compatible Poly(2-methoxyethyl acrylate) Induces Blebbing-like Phenomenon and Promotes Viability of Tumor Cells in Serum-Free Medium. ACS Applied Bio Materials, 2020, 3, 1858-1864.	4.6	4
15	Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers. ACS Biomaterials Science and Engineering, 2020, 6, 2855-2866.	5 . 2	12
16	Design of Polymeric Biomaterials: The "Intermediate Water Concept― Bulletin of the Chemical Society of Japan, 2019, 92, 2043-2057.	3.2	65
17	Hydration States and Blood Compatibility of Hydrogen-Bonded Supramolecular Poly(2-methoxyethyl) Tj ETQq1 1	1 0.78431	4 rgBT /Overlo
18	Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units. Polymer, 2019, 169, 225-233.	3.8	12

#	Article	IF	CITATIONS
19	Longâ€Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core–Shell Nanowires. Advanced Healthcare Materials, 2019, 8, e1900130.	7.6	52
20	Living Anionic Polymerization of 4â€(1â€Adamantyl)â€Î±â€Methylstyrene. Macromolecular Chemistry and Physic 2018, 219, 1700450.	CS, _{2.2}	13
21	Thermosensitive Polymer Biocompatibility Based on Interfacial Structure at Biointerface. ACS Biomaterials Science and Engineering, 2018, 4, 1591-1597.	5.2	21
22	Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science Advances, 2018, 4, eaau2426.	10.3	155
23	A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 5115-5129.	5.8	5
24	Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime. Annals of Biomedical Engineering, 2017, 45, 1352-1364.	2.5	2
25	Synthesis and Thrombogenicity Evaluation of Poly(3-methoxypropionic acid vinyl ester): A Candidate for Blood-Compatible Polymers. Biomacromolecules, 2017, 18, 1609-1616.	5.4	27
26	Poly(ω-methoxyalkyl acrylate)s: Nonthrombogenic Polymer Family with Tunable Protein Adsorption. Biomacromolecules, 2017, 18, 4214-4223.	5.4	69
27	Synthesis of Sequence-Specific Polymers with Amide Side Chains via Regio-/Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted <i>cis</i> -Cyclooctene. Macromolecules, 2016, 49, 8154-8161.	4.8	24
28	Interfacial Structures and Fibrinogen Adsorption at Blood-Compatible Polymer/Water Interfaces. ACS Biomaterials Science and Engineering, 2016, 2, 2122-2126.	5.2	34
29	Regioselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes with Ether Side Chains Macromolecules, 2016, 49, 2493-2501.	4.8	40
30	In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells. PLoS ONE, 2016, 11, e0158289.	2.5	5
31	The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues. Macromolecular Bioscience, 2015, 15, 1296-1303.	4.1	82
32	Design of biocompatible and biodegradable polymers based on intermediate water concept. Polymer Journal, 2015, 47, 114-121.	2.7	126
33	Ring-Opening Metathesis Polymerization. , 2015, , 2154-2164.		0
34	Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. Applied Petrochemical Research, 2015, 5, 19-25.	1.3	35
35	Ring-Opening Metathesis Polymerization. , 2014, , 1-12.		0
36	Influence of Functionalized Graphene Sheets on Modulus and Glass Transition of PMMA. Macromolecules, 2014, 47, 7674-7676.	4.8	29

#	Article	IF	CITATIONS
37	Functionalized linear low-density polyethylene by ring-opening metathesis polymerization. Polymer Chemistry, 2013, 4, 1193-1198.	3.9	25
38	Adhesion between polyethylenes and different types of polypropylenes. Polymer Journal, 2012, 44, 939-945.	2.7	13
39	Blends of polyolefin/PMMA for improved scratch resistance, adhesion and compatibility. Polymer, 2012, 53, 3636-3641.	3.8	24
40	Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes. Journal of the American Chemical Society, 2011, 133, 5794-5797.	13.7	124
41	Amino-Functionalized Polyethylene for Enhancing the Adhesion between Polyolefins and Polyurethanes. Industrial & Engineering Chemistry Research, 2011, 50, 3274-3279.	3.7	27
42	Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 2011, 52, 1837-1846.	3.8	358
43	Model Linear Low Density Polyethylenes from the ROMP of 5-Hexylcyclooct-1-ene. Australian Journal of Chemistry, 2010, 63, 1201.	0.9	16
44	Synthesis of well-defined random and block copolymers of 2-(1-adamantyl)-1,3-butadiene with isoprene via anionic polymerization. Reactive and Functional Polymers, 2009, 69, 409-415.	4.1	25
45	Controlled Polymerization of a Cyclic Diene Prepared from the Ring-Closing Metathesis of a Naturally Occurring Monoterpene. Journal of the American Chemical Society, 2009, 131, 7960-7961.	13.7	84
46	Synthesis of Well-Defined Poly(ethylene- <i>alt</i> -1-vinyladamantane) via Living Anionic Polymerization of 2-(1-Adamantyl)-1,3-butadiene, Followed by Hydrogenation. Macromolecules, 2009, 42, 5017-5026.	4.8	31
47	Living anionic polymerization of styrenes containing adamantyl skeletons. Journal of Physics: Conference Series, 2009, 184, 012017.	0.4	3
48	Synthesis and Properties of New Thermoplastic Elastomers Containing Poly[4-(1-adamantyl)styrene] Hard Segments. Macromolecules, 2008, 41, 5502-5508.	4.8	39
49	Spontaneous Copolymerization of $1,3$ -Dehydroadamantane. Macromolecular Symposia, $2007, 249-250, 373-377.$	0.7	4
50	Living Anionic Polymerizations of 4-(1-Adamantyl)styrene and 3-(4-Vinylphenyl)-1,1â€⁻-biadamantane. Macromolecules, 2006, 39, 5979-5986.	4.8	39
51	Salt resistivity of poly (4-vinyl benzoic acid) gel. Colloid and Polymer Science, 2006, 285, 485-489.	2.1	8