Shingo Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394917/publications.pdf

Version: 2024-02-01

51	1,817 citations	279701	42 g-index
papers	citations	h-index	g-maex
51 all docs	51 docs citations	51 times ranked	2080 citing authors

#	Article	IF	CITATIONS
1	Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 2011, 52, 1837-1846.	1.8	358
2	Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science Advances, 2018, 4, eaau2426.	4.7	155
3	Design of biocompatible and biodegradable polymers based on intermediate water concept. Polymer Journal, 2015, 47, 114-121.	1.3	126
4	Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes. Journal of the American Chemical Society, 2011, 133, 5794-5797.	6.6	124
5	Controlled Polymerization of a Cyclic Diene Prepared from the Ring-Closing Metathesis of a Naturally Occurring Monoterpene. Journal of the American Chemical Society, 2009, 131, 7960-7961.	6.6	84
6	The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues. Macromolecular Bioscience, 2015, 15, 1296-1303.	2.1	82
7	Poly(ω-methoxyalkyl acrylate)s: Nonthrombogenic Polymer Family with Tunable Protein Adsorption. Biomacromolecules, 2017, 18, 4214-4223.	2.6	69
8	Design of Polymeric Biomaterials: The "Intermediate Water Concept― Bulletin of the Chemical Society of Japan, 2019, 92, 2043-2057.	2.0	65
9	Longâ€Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core–Shell Nanowires. Advanced Healthcare Materials, 2019, 8, e1900130.	3.9	52
10	Regioselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes with Ether Side Chains Macromolecules, 2016, 49, 2493-2501.	2.2	40
11	Living Anionic Polymerizations of 4-(1-Adamantyl)styrene and 3-(4-Vinylphenyl)-1,1â€~-biadamantane. Macromolecules, 2006, 39, 5979-5986.	2.2	39
12	Synthesis and Properties of New Thermoplastic Elastomers Containing Poly[4-(1-adamantyl)styrene] Hard Segments. Macromolecules, 2008, 41, 5502-5508.	2.2	39
13	Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Science Advances, 2021, 7, eabi6290.	4.7	36
14	Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. Applied Petrochemical Research, 2015, 5, 19-25.	1.3	35
15	Interfacial Structures and Fibrinogen Adsorption at Blood-Compatible Polymer/Water Interfaces. ACS Biomaterials Science and Engineering, 2016, 2, 2122-2126.	2.6	34
16	Synthesis of Well-Defined Poly(ethylene- <i>alt</i> -1-vinyladamantane) via Living Anionic Polymerization of 2-(1-Adamantyl)-1,3-butadiene, Followed by Hydrogenation. Macromolecules, 2009, 42, 5017-5026.	2.2	31
17	Influence of Functionalized Graphene Sheets on Modulus and Glass Transition of PMMA. Macromolecules, 2014, 47, 7674-7676.	2.2	29
18	Amino-Functionalized Polyethylene for Enhancing the Adhesion between Polyolefins and Polyurethanes. Industrial & Dolyurethanes. Industrial & D	1.8	27

#	Article	IF	Citations
19	Synthesis and Thrombogenicity Evaluation of Poly(3-methoxypropionic acid vinyl ester): A Candidate for Blood-Compatible Polymers. Biomacromolecules, 2017, 18, 1609-1616.	2.6	27
20	Synthesis of well-defined random and block copolymers of 2-(1-adamantyl)-1,3-butadiene with isoprene via anionic polymerization. Reactive and Functional Polymers, 2009, 69, 409-415.	2.0	25
21	Functionalized linear low-density polyethylene by ring-opening metathesis polymerization. Polymer Chemistry, 2013, 4, 1193-1198.	1.9	25
22	Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomaterialia, 2021, 134, 313-324.	4.1	25
23	Blends of polyolefin/PMMA for improved scratch resistance, adhesion and compatibility. Polymer, 2012, 53, 3636-3641.	1.8	24
24	Synthesis of Sequence-Specific Polymers with Amide Side Chains via Regio-/Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted <i>cis</i> -Cyclooctene. Macromolecules, 2016, 49, 8154-8161.	2.2	24
25	Side-Chain Spacing Control of Derivatives of Poly(2-methoxyethyl acrylate): Impact on Hydration States and Antithrombogenicity. Macromolecules, 2020, 53, 8570-8580.	2.2	22
26	Thermosensitive Polymer Biocompatibility Based on Interfacial Structure at Biointerface. ACS Biomaterials Science and Engineering, 2018, 4, 1591-1597.	2.6	21
27	Elucidating the Feature of Intermediate Water in Hydrated Poly(Ή-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement. ACS Biomaterials Science and Engineering, 2020, 6, 3915-3924.	2.6	17
28	Model Linear Low Density Polyethylenes from the ROMP of 5-Hexylcyclooct-1-ene. Australian Journal of Chemistry, 2010, 63, 1201.	0.5	16
29	Hydration States and Blood Compatibility of Hydrogen-Bonded Supramolecular Poly(2-methoxyethyl) Tj ETQq $1\ 1$	0.7 <u>8</u> 4314	ł rgBT /Oved
30	Adhesion between polyethylenes and different types of polypropylenes. Polymer Journal, 2012, 44, 939-945.	1.3	13
31	Living Anionic Polymerization of 4â€(1â€Adamantyl)â€Î±â€Methylstyrene. Macromolecular Chemistry and Physics 2018, 219, 1700450.	s, 1.1	13
32	Silsesquioxane/Poly(2-methoxyethyl acrylate) Hybrid with Both Antithrombotic and Endothelial Cell Adhesive Properties. ACS Applied Polymer Materials, 2020, 2, 4790-4801.	2.0	13
33	Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units. Polymer, 2019, 169, 225-233.	1.8	12
34	Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers. ACS Biomaterials Science and Engineering, 2020, 6, 2855-2866.	2.6	12
35	Molecular Dynamics Study on the Water Mobility and Side-Chain Flexibility of Hydrated Poly(Ή-methoxyalkyl acrylate)s. ACS Biomaterials Science and Engineering, 2020, 6, 6690-6700.	2.6	10
36	Salt resistivity of poly (4-vinyl benzoic acid) gel. Colloid and Polymer Science, 2006, 285, 485-489.	1.0	8

#	Article	IF	CITATIONS
37	Periodically Functionalized Linear Polyethylene with Tertiary Amino Groups via Regioselective Ring-Opening Metathesis Polymerization. Macromolecules, 2021, 54, 2862-2872.	2.2	8
38	A fully covered self-expandable metallic stent coated with poly (2-methoxyethyl acrylate) and its derivative: In vitro evaluation of early-stage biliary sludge formation inhibition. Materials Science and Engineering C, 2021, 120, 111386.	3.8	7
39	Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study. ACS Biomaterials Science and Engineering, 2021, 7, 2383-2391.	2.6	7
40	Effect of pendant groups on the blood compatibility and hydration states of poly(2â€oxazoline)s. Journal of Polymer Science, 2021, 59, 2559-2570.	2.0	7
41	Protein Stabilization Effect of Zwitterionic Osmolyte-bearing Polymer. Chemistry Letters, 2021, 50, 1699-1702.	0.7	7
42	Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. Coatings, 2021, 11, 461.	1.2	6
43	Poly(tertiary amide acrylate) Copolymers Inspired by Poly(2-oxazoline)s: Their Blood Compatibility and Hydration States. Biomacromolecules, 2021, 22, 2718-2728.	2.6	6
44	A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 5115-5129.	2.9	5
45	In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells. PLoS ONE, 2016, 11, e0158289.	1.1	5
46	Spontaneous Copolymerization of 1,3-Dehydroadamantane. Macromolecular Symposia, 2007, 249-250, 373-377.	0.4	4
47	Blood-Compatible Poly(2-methoxyethyl acrylate) Induces Blebbing-like Phenomenon and Promotes Viability of Tumor Cells in Serum-Free Medium. ACS Applied Bio Materials, 2020, 3, 1858-1864.	2.3	4
48	Living anionic polymerization of styrenes containing adamantyl skeletons. Journal of Physics: Conference Series, 2009, 184, 012017.	0.3	3
49	Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime. Annals of Biomedical Engineering, 2017, 45, 1352-1364.	1.3	2
50	Ring-Opening Metathesis Polymerization. , 2014, , 1-12.		0
51	Ring-Opening Metathesis Polymerization. , 2015, , 2154-2164.		O