Blanca de las Rivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394752/publications.pdf

Version: 2024-02-01

71061 88593 5,868 134 41 70 citations h-index g-index papers 134 134 134 6028 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 2009, 132, 79-90.	2.1	494
2	Activation of Bacterial Thermoalkalophilic Lipases Is Spurred by Dramatic Structural Rearrangements. Journal of Biological Chemistry, 2009, 284, 4365-4372.	1.6	196
3	Molecular methods for the detection of biogenic amine-producing bacteria on foods. International Journal of Food Microbiology, 2007, 117, 258-269.	2.1	195
4	Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Critical Reviews in Food Science and Nutrition, 2016, 56, 1826-1843.	5.4	148
5	Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Critical Reviews in Food Science and Nutrition, 2012, 52, 448-467.	5.4	139
6	Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chemistry, 2008, 107, 1393-1398.	4.2	134
7	Rational Coâ€Immobilization of Biâ€Enzyme Cascades on Porous Supports and their Applications in Bioâ€Redox Reactions with Inâ€Situ Recycling of Soluble Cofactors. ChemCatChem, 2012, 4, 1279-1288.	1.8	123
8	Characterization of a Feruloyl Esterase from Lactobacillus plantarum. Applied and Environmental Microbiology, 2013, 79, 5130-5136.	1.4	120
9	Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 2008, 48, 697-714.	5.4	117
10	PCR Detection of Foodborne Bacteria Producing the Biogenic Amines Histamine, Tyramine, Putrescine, and Cadaverine. Journal of Food Protection, 2006, 69, 2509-2514.	0.8	112
11	Purification and Polar Localization of Pneumococcal LytB, a Putative Endo-β- N -Acetylglucosaminidase: the Chain-Dispersing Murein Hydrolase. Journal of Bacteriology, 2002, 184, 4988-5000.	1.0	111
12	Allelic Diversity and Population Structure in Oenococcus oeni as Determined from Sequence Analysis of Housekeeping Genes. Applied and Environmental Microbiology, 2004, 70, 7210-7219.	1.4	101
13	Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology (United Kingdom), 2006, 152, 85-93.	0.7	100
14	Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose. Biomacromolecules, 2008, 9, 2553-2561.	2.6	98
15	Tannin Degradation by a Novel Tannase Enzyme Present in Some Lactobacillus plantarum Strains. Applied and Environmental Microbiology, 2014, 80, 2991-2997.	1.4	97
16	Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chemistry, 2008, 107, 664-670.	4.2	94
17	Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiology Letters, 2005, 244, 367-372.	0.7	92
18	Identification of the ornithine decarboxylase gene in the putrescine-producerOenococcus oeniBIFI-83. FEMS Microbiology Letters, 2004, 239, 213-220.	0.7	88

#	Article	IF	CITATIONS
19	Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chemistry, 2008, 107, 320-326.	4.2	84
20	Characterization of the <i>p</i> -Coumaric Acid Decarboxylase from Lactobacillus plantarum CECT 748 ^T . Journal of Agricultural and Food Chemistry, 2008, 56, 3068-3072.	2.4	81
21	Multiplex PCR Method for the Simultaneous Detection of Histamine-, Tyramine-, and Putrescine-Producing Lactic Acid Bacteria in Foods. Journal of Food Protection, 2005, 68, 874-878.	0.8	80
22	Production and Physicochemical Properties of Recombinant <i>Lactobacillus plantarum</i> Tannase. Journal of Agricultural and Food Chemistry, 2009, 57, 6224-6230.	2.4	79
23	First genetic characterization of a bacterial β-phenylethylamine biosynthetic enzyme in Enterococcus faecium RM58. FEMS Microbiology Letters, 2006, 258, 144-149.	0.7	77
24	In Vitro Removal of Ochratoxin A by Wine Lactic Acid Bacteria. Journal of Food Protection, 2007, 70, 2155-2160.	0.8	77
25	Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Science, 2013, 95, 272-280.	2.7	75
26	A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters. Applied and Environmental Microbiology, 2015, 81, 3235-3242.	1.4	75
27	Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International Journal of Food Microbiology, 2008, 121, 92-98.	2.1	74
28	Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. Journal of Functional Foods, 2014, 7, 322-329.	1.6	74
29	Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation. Applied and Environmental Microbiology, 2013, 79, 4253-4263.	1.4	72
30	Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chemistry, 2010, 120, 225-229.	4.2	71
31	Evidence for Horizontal Gene Transfer as Origin of Putrescine Production in Oenococcus oeni RM83. Applied and Environmental Microbiology, 2006, 72, 7954-7958.	1.4	59
32	Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products. Meat Science, 2013, 93, 387-396.	2.7	58
33	Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT - Food Science and Technology, 2015, 60, 246-252.	2.5	56
34	Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 617-624.	1.4	55
35	Molecular Screening of Wine Lactic Acid Bacteria Degrading Hydroxycinnamic Acids. Journal of Agricultural and Food Chemistry, 2009, 57, 490-494.	2.4	54
36	Degradation of Ochratoxin A by <i>Brevibacterium</i> Species. Journal of Agricultural and Food Chemistry, 2011, 59, 10755-10760.	2.4	53

#	Article	IF	CITATIONS
37	Production of biogenic amines by lactic acid bacteria and enterobacteria isolated from fresh pork sausages packaged in different atmospheres and kept under refrigeration. Meat Science, 2011, 88, 368-373.	2.7	53
38	<i>p</i> â€Coumaric acid decarboxylase from <i>Lactobacillus plantarum</i> : Structural insights into the active site and decarboxylation catalytic mechanism. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1662-1676.	1.5	52
39	High-Added-Value Antioxidants Obtained from the Degradation of Wine Phenolics by Lactobacillus plantarum. Journal of Food Protection, 2007, 70, 2670-2675.	0.8	50
40	Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols. Applied and Environmental Microbiology, 2018, 84, .	1.4	47
41	The pURI family of expression vectors: A versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins. Protein Expression and Purification, 2011, 76, 44-53.	0.6	45
42	Genomeâ€wide transcriptomic responses of a human isolate of <i><scp>L</scp>actobacillus plantarum</i> exposed to <i>p</i> â€coumaric acid stress. Molecular Nutrition and Food Research, 2012, 56, 1848-1859.	1.5	42
43	Enzymatic Synthesis and Characterization of Fructooligosaccharides and Novel Maltosylfructosides by Inulosucrase from Lactobacillus gasseri DSM 20604. Applied and Environmental Microbiology, 2013, 79, 4129-4140.	1.4	42
44	Screening of biogenic amine production by coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham processes. Meat Science, 2007, 77, 556-561.	2.7	41
45	Enhanced activity of an immobilized lipase promoted by site-directed chemical modification with polymers. Process Biochemistry, 2010, 45, 534-541.	1.8	41
46	Glyoxyl-Disulfide Agarose: A Tailor-Made Support for Site-Directed Rigidification of Proteins. Biomacromolecules, 2011, 12, 1800-1809.	2.6	41
47	Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity. Chemical Communications, 2015, 51, 9324-9327.	2.2	39
48	Bacterial tannases: classification and biochemical properties. Applied Microbiology and Biotechnology, 2019, 103, 603-623.	1.7	39
49	Biogenic amine production by bacteria isolated from ice-preserved sardine and mackerel. Food Control, 2012, 25, 89-95.	2.8	38
50	Characterization of a Cold-Active Esterase from <i>Lactobacillus plantarum</i> Suitable for Food Fermentations. Journal of Agricultural and Food Chemistry, 2014, 62, 5126-5132.	2.4	36
51	Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation. Applied and Environmental Microbiology, 2017, 83, .	1.4	35
52	Unravelling the Reduction Pathway as an Alternative Metabolic Route to Hydroxycinnamate Decarboxylation in Lactobacillus plantarum. Applied and Environmental Microbiology, 2018, 84, .	1.4	35
53	Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. International Journal of Food Microbiology, 2011, 146, 212-216.	2.1	34
54	High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile \hat{l}^2 -trefoil lectin domain from the mushroom Laetiporus sulphureus. Glycobiology, 2011, 21, 1349-1361.	1.3	34

#	Article	IF	CITATIONS
55	Hydrolysis of Tannic Acid Catalyzed by Immobilizedâ^'Stabilized Derivatives of Tannase from Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 2010, 58, 6403-6409.	2.4	33
56	An amperometric affinity penicillin-binding protein magnetosensor for the detection of \hat{l}^2 -lactam antibiotics in milk. Analyst, The, 2013, 138, 2013.	1.7	33
57	Biogenic amine production by Gram-positive bacteria isolated from Spanish dry-cured "chorizo― sausage treated with high pressure and kept in chilled storage. Meat Science, 2008, 80, 272-277.	2.7	32
58	Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from <i>Lactobacillus Aplantarum </i>	2.2	32
59	Semisynthetic peptide–lipase conjugates for improved biotransformations. Chemical Communications, 2012, 48, 9053.	2.2	31
60	Molecular Characterization of the Pneumococcal Teichoic Acid Phosphorylcholine Esterase. Microbial Drug Resistance, 2001, 7, 213-222.	0.9	29
61	Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development. Frontiers in Microbiology, 2014, 5, 684.	1.5	29
62	Molecular adaptation of Lactobacillus plantarum WCFS1 to gallic acid revealed by genome-scale transcriptomic signature and physiological analysis. Microbial Cell Factories, 2015, 14, 160.	1.9	28
63	Tannic Acid-Dependent Modulation of Selected Lactobacillus plantarum Traits Linked to Gastrointestinal Survival. PLoS ONE, 2013, 8, e66473.	1.1	28
64	Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase extractive fermentation using free or immobilized recombinant E. coli expressing pad gene. Enzyme and Microbial Technology, 2014, 58-59, 22-28.	1.6	27
65	Effect of soaking and fermentation on content of phenolic compounds of soybean (<i>Glycine max</i>) Tj ETQq1 and Nutrition, 2015, 66, 203-209.		
66	Complete nucleotide sequence and structural organization of pPB1, a small Lactobacillus plantarum cryptic plasmid that originated by modular exchange. Plasmid, 2004, 52, 203-211.	0.4	26
67	Evaluation of Exopolysaccharide Production by Leuconostoc mesenteroides Strains Isolated from Wine. Journal of Food Science, 2008, 73, M196-M199.	1.5	26
68	Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 2011, 128, 214-217.	4.2	26
69	Response of a <i>Lactobacillus plantarum</i> human isolate to tannic acid challenge assessed by proteomic analyses. Molecular Nutrition and Food Research, 2011, 55, 1454-1465.	1.5	24
70	Unravelling the diversity of glycoside hydrolase family 13 \hat{l} ±-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2019, 18, 183.	1.9	24
71	Expression Vectors for Enzyme Restriction- and Ligation-Independent Cloning for Producing Recombinant His-Fusion Proteins. Biotechnology Progress, 2008, 23, 680-686.	1.3	23
72	Esterase LpEst1 from Lactobacillus plantarum: A Novel and Atypical Member of the $\hat{l}\pm\hat{l}^2$ Hydrolase Superfamily of Enzymes. PLoS ONE, 2014, 9, e92257.	1.1	23

#	Article	IF	Citations
73	Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis. Journal of Dairy Science, 2014, 97, 6737-6744.	1.4	23
74	Molecular cloning and functional characterization of a histidine decarboxylase from Staphylococcus capitis. Journal of Applied Microbiology, 2007, 104, 071003000434006-???.	1.4	22
75	Cloning, production, purification and preliminary crystallographic analysis of a glycosidase from the food lactic acid bacterium Lactobacillus plantarum CECT 748T. Protein Expression and Purification, 2009, 68, 177-182.	0.6	22
76	Integrated Amperometric Affinity Biosensors Using Co ²⁺ –Tetradentate Nitrilotriacetic Acid Modified Disposable Carbon Electrodes: Application to the Determination of β-Lactam Antibiotics. Analytical Chemistry, 2013, 85, 3246-3254.	3.2	22
77	Changes on enantioselectivity of a genetically modified thermophilic lipase by site-directed oriented immobilization. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 121-127.	1.8	22
78	The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum. Frontiers in Microbiology, 2016, 7, 1118.	1.5	22
79	The Tyrosine Decarboxylation Test Does Not Differentiate Enterococcus faecalis from Enterococcus faecium. Systematic and Applied Microbiology, 2004, 27, 423-426.	1.2	21
80	PCR methods for the detection of biogenic amine-producing bacteria on wine. Annals of Microbiology, 2011, 61, 159-166.	1.1	21
81	Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. Bioresource Technology, 2012, 117, 274-285.	4.8	21
82	Characterization of a Second Ornithine Decarboxylase Isolated from Morganella morganii. Journal of Food Protection, 2008, 71, 657-661.	0.8	20
83	Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Applied Microbiology and Biotechnology, 2014, 98, 6329-37.	1.7	20
84	A Diverse Range of Human Gut Bacteria Have the Potential To Metabolize the Dietary Component Gallic Acid. Applied and Environmental Microbiology, 2018, 84, .	1.4	20
85	Medium engineering on modified Geobacillus thermocatenulatus lipase to prepare highly active catalysts. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 144-148.	1.8	19
86	Characterisation of a cold-active and salt-tolerant esterase from Lactobacillus plantarum with potential application during cheese ripening. International Dairy Journal, 2014, 39, 312-315.	1.5	19
87	Characterization of a Versatile Arylesterase from <i>Lactobacillus plantarum</i> Active on Wine Esters. Journal of Agricultural and Food Chemistry, 2014, 62, 5118-5125.	2.4	19
88	Improving Properties of a Novel \hat{I}^2 -Galactosidase from Lactobacillus plantarum by Covalent Immobilization. Molecules, 2015, 20, 7874-7889.	1.7	19
89	Site-directing an intense multipoint covalent attachment (MCA) of mutants of the Geobacillus thermocatenulatus lipase 2 (BTL2): Genetic and chemical amination plus immobilization on a tailor-made support. Process Biochemistry, 2014, 49, 1324-1331.	1.8	18
90	Crystal Structure of the Hexameric Catabolic Ornithine Transcarbamylase from Lactobacillus hilgardii: Structural Insights into the Oligomeric Assembly and Metal Binding. Journal of Molecular Biology, 2009, 393, 425-434.	2.0	17

#	Article	IF	CITATIONS
91	Sequencing, Characterization, and Gene Expression Analysis of the Histidine Decarboxylase Gene Cluster of Morganella morganii. Current Microbiology, 2014, 68, 404-411.	1.0	17
92	Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose. PLoS ONE, 2015, 10, e0139035.	1.1	17
93	Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase. Applied Microbiology and Biotechnology, 2016, 100, 6251-6263.	1.7	17
94	Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microbial Cell Factories, 2018, 17, 33.	1.9	17
95	Efficacy of recA gene sequence analysis in the identification and discrimination of Lactobacillus hilgardii strains isolated from stuck wine fermentations. International Journal of Food Microbiology, 2007, 115, 70-78.	2.1	16
96	Characterization of a Benzyl Alcohol Dehydrogenase from Lactobacillus plantarum WCFS1. Journal of Agricultural and Food Chemistry, 2008, 56, 4497-4503.	2.4	15
97	Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus. Microbial Cell Factories, 2014, 13, 154.	1.9	15
98	Production of \hat{l} ±-rhamnosidases from Lactobacillus plantarum WCFS1 and their role in deglycosylation of dietary flavonoids naringin and rutin. International Journal of Biological Macromolecules, 2021, 193, 1093-1102.	3.6	15
99	Gene organization of the ornithine decarboxylase-encoding region in Morganella morganii. Journal of Applied Microbiology, 2007, 102, 1551-1560.	1.4	14
100	Use of recA gene sequence analysis for the identification of Staphylococcus equorum strains predominant on dry-cured hams. Food Microbiology, 2011, 28, 1205-1210.	2.1	14
101	Reactivation of a thermostable lipase by solid phase unfolding/refolding. Enzyme and Microbial Technology, 2011, 49, 388-394.	1.6	14
102	Biotransformation of Phenolics by Lactobacillus plantarum in Fermented Foods., 2017,, 63-83.		14
103	Ultra-Small Pd(0) Nanoparticles into a Designed Semisynthetic Lipase: An Efficient and Recyclable Heterogeneous Biohybrid Catalyst for the Heck Reaction under Mild Conditions. Molecules, 2018, 23, 2358.	1.7	14
104	Hydrolysis of Lactose and Transglycosylation of Selected Sugar Alcohols by LacA \hat{l}^2 -Galactosidase from <i>Lactobacillus plantarum</i> WCFS1. Journal of Agricultural and Food Chemistry, 2020, 68, 7040-7050.	2.4	14
105	Purification, immobilization, and characterization of a specific lipase from <i>Staphylococcus warneri</i> EX17 by enzyme fractionating via adsorption on different hydrophobic supports. Biotechnology Progress, 2011, 27, 717-723.	1.3	12
106	Transcriptional Reprogramming at Genome-Scale of Lactobacillus plantarum WCFS1 in Response to Olive Oil Challenge. Frontiers in Microbiology, 2017, 8, 244.	1.5	12
107	Transcriptomeâ€Based Analysis in <i>Lactobacillus plantarum</i> Resveratrol Effects at System Level. Molecular Nutrition and Food Research, 2018, 62, e1700992.	1.5	11
108	The use of i>Lactobacillus plantarum i>esterase genes: a biotechnological strategy to increase the bioavailability of dietary phenolic compounds in lactic acid bacteria. International Journal of Food Sciences and Nutrition, 2021, 72, 1035-1045.	1.3	11

#	Article	lF	CITATIONS
109	Low ionic liquid concentration in water: a green and simple approach to improve activity and selectivity of lipases. RSC Advances, 2014, 4, 49115-49122.	1.7	10
110	Enzymatic Synthesis and Structural Characterization of Theanderose through Transfructosylation Reaction Catalyzed by Levansucrase from <i>Bacillus subtilis</i> CECT 39. Journal of Agricultural and Food Chemistry, 2017, 65, 10505-10513.	2.4	10
111	Effect of Siteâ€Specific Peptideâ€Tag Labeling on the Biocatalytic Properties of Thermoalkalophilic Lipase from <i>Geobacillus thermocatenulatus</i>). ChemBioChem, 2018, 19, 369-378.	1.3	10
112	Pd-Oxazolone complexes conjugated to an engineered enzyme: improving fluorescence and catalytic properties. Organic and Biomolecular Chemistry, 2021, 19, 2773-2783.	1.5	10
113	Degradation of phenolic compounds found in olive products by Lactobacillus plantarum strains. , 2021, , 133-144.		10
114	Contribution of a tannase from Atopobium parvulum DSM 20469T in the oral processing of food tannins. Food Research International, 2014, 62, 397-402.	2.9	9
115	Synthesis of potentially-bioactive lactosyl-oligofructosides by a novel bi-enzymatic system using bacterial fructansucrases. Food Research International, 2015, 78, 258-265.	2.9	9
116	Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An \hat{l}_{\pm} -galactosidase displaying regioselective transgalactosylation. International Journal of Biological Macromolecules, 2020, 153, 1070-1079.	3.6	9
117	Characterization of ISLpl4, a functional insertion sequence in Lactobacillus plantarum. Gene, 2005, 363, 202-210.	1.0	8
118	Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 300-303.	0.7	8
119	Degradation of Phenolic Compounds Found in Olive Products by Lactobacillus plantarum Strains. , 2010, , 387-396.		8
120	Oleuropein Transcriptionally Primes Lactobacillus plantarum to Interact With Plant Hosts. Frontiers in Microbiology, 2019, 10, 2177.	1.5	8
121	The commensal bacterium <i>Lactiplantibacillus plantarum </i> imprints innate memory-like responses in mononuclear phagocytes. Gut Microbes, 2021, 13, 1939598.	4.3	8
122	Transcriptomic Evidence of Molecular Mechanisms Underlying the Response of Lactobacillus plantarum WCFS1 to Hydroxytyrosol. Antioxidants, 2020, 9, 442.	2.2	8
123	Crystallization and preliminary X-ray diffraction studies of the BTL2 lipase from the extremophilic microorganism <i>Bacillus thermocatenulatus</i> Local Crystallographica Section F: Structural Biology Communications, 2008, 64, 1043-1045.	0.7	7
124	The crystal structure of galactitolâ€1â€phosphate 5â€dehydrogenase from <i>Escherichia coli</i> K12 provides insights into its anomalous behavior on IMAC processes. FEBS Letters, 2012, 586, 3127-3133.	1.3	7
125	Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by <i>Lactobacillus plantarum</i> WCFS1 MelA α-Galactosidase. Journal of Agricultural and Food Chemistry, 2021, 69, 955-965.	2.4	7
126	Molecular Responses of Lactobacilli to Plant Phenolic Compounds: A Comparative Review of the Mechanisms Involved. Antioxidants, 2022, 11, 18.	2.2	7

#	Article	IF	CITATIONS
127	Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from $\langle i \rangle$ Escherichia coli $\langle i \rangle$. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1540-1554.	2.5	6
128	Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1227-1236.	1.1	6
129	Lactic Acid Bacteria., 2011,, 191-226.		5
130	Chemical Modification of Novel Glycosidases from Lactobacillus plantarum Using Hyaluronic Acid: Effects on High Specificity against 6-Phosphate Glucopyranoside. Coatings, 2019, 9, 311.	1.2	5
131	Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase fromLactobacillus hilgardii. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 563-567.	0.7	3
132	Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from <i>Lactobacillus plantarum</i> WCFS1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1436-1439.	0.7	3
133	A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance. Microbial Biotechnology, 2020, , .	2.0	3
134	Geranyl Functionalized Materials for Site-Specific Co-Immobilization of Proteins. Molecules, 2021, 26, 3028.	1.7	0