
Chia-Yun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394690/publications.pdf Version: 2024-02-01

CHIA-YUN CHEN

#	Article	IF	CITATIONS
1	Day-night active photocatalysts obtained through effective incorporation of Au@CuxS nanoparticles onto ZnO nanowalls. Journal of Hazardous Materials, 2022, 421, 126674.	6.5	14
2	Interface management of silicon-nanowire based hybrid solar cells through facile solution-processed oxidation. Materials Letters, 2022, 307, 130967.	1.3	7
3	Synergetic Interplay of Curved Si Nanobelts and WO ₃ Nanoparticles as Heterostructure Design Featuring Effective Room-Temperature NO ₂ Detection. ACS Applied Nano Materials, 2022, 5, 8962-8972.	2.4	3
4	Light Trapping of Inclined Si Nanowires for Efficient Inorganic/Organic Hybrid Solar Cells. Nanomaterials, 2022, 12, 1821.	1.9	2
5	Stability improvement of Cu(<scp>ii</scp>)-doped ZnS/ZnO photodetectors prepared with a facile solution-processing method. Inorganic Chemistry Frontiers, 2021, 8, 311-318.	3.0	21
6	Dual-sized carbon quantum dots enabling outstanding silicon-based photodetectors. Applied Surface Science, 2021, 542, 148705.	3.1	22
7	The improved photocatalytic activity of highly expanded MoS ₂ under visible light emitting diodes. Nanoscale Advances, 2021, 3, 1106-1120.	2.2	28
8	Synergistic absorbents based on SnFe ₂ O ₄ @ZnO nanoparticles decorated with reduced graphene oxide for highly efficient dye adsorption at room temperature. RSC Advances, 2021, 11, 17840-17848.	1.7	8
9	Optical Management of CQD/AgNP@SiNW Arrays with Highly Efficient Capability of Dye Degradation. Catalysts, 2021, 11, 399.	1.6	9
10	Hydrodynamic benefits of artificial cilia distribution towards photodegradation processes. Sensors and Actuators A: Physical, 2020, 313, 112184.	2.0	4
11	Highly conductive PEDOT:PSS film made with ethylene-glycol addition and heated-stir treatment for enhanced photovoltaic performances. Materials Chemistry Frontiers, 2020, 4, 3302-3309.	3.2	33
12	Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region. Materials, 2020, 13, 1470.	1.3	24
13	Simple Cosolvent-Treated PEDOT:PSS Films on Hybrid Solar Cells With Improved Efficiency. IEEE Journal of Photovoltaics, 2020, 10, 771-776.	1.5	9
14	Passivating silicon-based hybrid solar cells through tuning PbI2 content of perovskite coatings. Applied Surface Science, 2020, 511, 145541.	3.1	10
15	High-Speed and Direction-Controlled Formation of Silicon Nanowire Arrays Assisted by Electric Field. Nanoscale Research Letters, 2020, 15, 25.	3.1	9
16	ZnO/Cu2O/Si Nanowire Arrays as Ternary Heterostructure-Based Photocatalysts with Enhanced Photodegradation Performances. Nanoscale Research Letters, 2019, 14, 244.	3.1	36
17	Self-formed silver nanoparticles on freestanding silicon nanowire arrays featuring SERS performances. RSC Advances, 2019, 9, 26037-26042.	1.7	5
18	Peculiar optical properties of bilayer silicene under the influence of external electric and magnetic fields. Scientific Reports, 2019, 9, 624.	1.6	18

CHIA-YUN CHEN

#	Article	IF	CITATIONS
19	18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact. Applied Surface Science, 2019, 478, 725-732.	3.1	41
20	Vanadium Oxide as Transparent Carrier-Selective Layer in Silicon Hybrid Solar Cells Promoting Photovoltaic Performances. ACS Applied Energy Materials, 2019, 2, 4873-4881.	2.5	40
21	Insights for Realizing Ultrasensitive Colorimetric Detection of Glucose Based on Carbon/Silver Core/Shell Nanodots. ACS Applied Bio Materials, 2019, 2, 2528-2538.	2.3	12
22	Tailoring the robust superhydrophobic silicon textures with stable photodetection properties. Scientific Reports, 2019, 9, 1579.	1.6	8
23	On the improvement of visible-responsive photodegradation through artificial cilia. Sensors and Actuators A: Physical, 2019, 285, 234-240.	2.0	9
24	Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Advanced Composites and Hybrid Materials, 2019, 2, 46-50.	9.9	38
25	Modification of TiO ₂ nanotubes with 3-aminopropyl triethoxysilane and its performances in nanocomposite coatings. New Journal of Chemistry, 2018, 42, 8745-8751.	1.4	20
26	Efficient Photocatalysts Made by Uniform Decoration of Cu2O Nanoparticles on Si Nanowire Arrays with Low Visible Reflectivity. Nanoscale Research Letters, 2018, 13, 312.	3.1	17
27	Solution-processed ZnO/Si based heterostructures with enhanced photocatalytic performance. New Journal of Chemistry, 2018, 42, 13797-13802.	1.4	28
28	Well incorporation of carbon nanodots with silicon nanowire arrays featuring excellent photocatalytic performances. Physical Chemistry Chemical Physics, 2017, 19, 11786-11792.	1.3	36
29	Broadband Photocatalytic Activity of Mesoporous Cd(II)â€Doped TiO ₂ . ChemistrySelect, 2017, 2, 3648-3656.	0.7	6
30	Surface modification of TiO2 nanotubes by grafting with APTS coupling agents. Materials Research Express, 2017, 4, 105043.	0.8	12
31	Highly Porous Silicon Nanowires Made with Solventâ€Mediated Wet Chemical Etching and Their Thermoelectric Applications. ChemistrySelect, 2017, 2, 10865-10870.	0.7	2
32	Enhancing formation rate of highly-oriented silicon nanowire arrays with the assistance of back substrates. Scientific Reports, 2017, 7, 3164.	1.6	16
33	Inherent formation of porous p-type Si nanowires using palladium-assisted chemical etching. Applied Surface Science, 2017, 392, 498-502.	3.1	21
34	Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement. Scientific Reports, 2017, 7, 17177.	1.6	35
35	Role of Annealing Temperature on the Formation of Aligned Zinc Oxide Nanorod Arrays for Efficient Photocatalysts and Photodetectors. Science of Advanced Materials, 2016, 8, 2197-2203.	0.1	14
36	Uniform trench arrays with controllable tilted profiles using metal-assisted chemical etching. Applied Surface Science, 2015, 333, 152-156.	3.1	17

CHIA-YUN CHEN

#	Article	IF	CITATIONS
37	SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires. Applied Surface Science, 2015, 355, 197-202.	3.1	18
38	Kinetic study of self-assembly of Ni(<scp>ii</scp>)-doped TiO ₂ nanocatalysts for the photodegradation of azo pollutants. RSC Advances, 2015, 5, 88266-88271.	1.7	20
39	Silverâ€Assisted Chemical Etching on Silicon with Polyvinylpyrrolidoneâ€Mediated Formation of Silver Dendrites. ChemPhysChem, 2015, 16, 540-545.	1.0	6
40	Unveiling the shape-diversified silicon nanowires made by HF/HNO ₃ isotropic etching with the assistance of silver. Nanoscale, 2015, 7, 1216-1223.	2.8	42
41	Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO ₂ Photocatalysts. Science of Advanced Materials, 2015, 7, 1053-1057.	0.1	7
42	Evolution of Etching Kinetics and Directional Transition of Nanowires Formed on Pyramidal Microtextures. Chemistry - an Asian Journal, 2014, 9, 93-99.	1.7	12
43	Exploring the kinetics of ordered silicon nanowires with the formation of nanogaps using metal-assisted chemical etching. Physical Chemistry Chemical Physics, 2014, 16, 26711-26714.	1.3	12
44	Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates. Nanoscale, 2014, 6, 811-816.	2.8	17
45	The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation. Scientific Reports, 2014, 4, 4779.	1.6	78
46	Magnetically actuated artificial cilia for optimum mixing performance in microfluidics. Lab on A Chip, 2013, 13, 2834.	3.1	83
47	Morphological transition of Si surfaces from solid nanowires to porous nanobelts at room temperature. Chemical Communications, 2013, 49, 7295.	2.2	12
48	Tailoring Broadband Antireflection on a Silicon Surface through Two‧tep Silverâ€Assisted Chemical Etching. ChemPhysChem, 2012, 13, 1415-1420.	1.0	20
49	Photocatalytic decolorization of Remazol Black 5 and Remazol Brilliant Orange 3RÂby mesoporous TiO2. Journal of Environmental Management, 2012, 102, 125-133.	3.8	26
50	Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles. Journal of Hazardous Materials, 2011, 185, 430-441.	6.5	82
51	Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin. Journal of Environmental Management, 2011, 92, 796-802.	3.8	106
52	Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Optics Express, 2009, 17, 15372.	1.7	198
53	Electric and magnetic responses in the multiple-split ring resonators by electric excitation. Journal of Applied Physics, 2009, 105, 124913.	1.1	5
54	Morphological Control of Single rystalline Silicon Nanowire Arrays near Room Temperature. Advanced Materials, 2008, 20, 3811-3815.	11.1	165

#	Article	IF	CITATIONS
55	Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Applied Physics Letters, 2008, 93, .	1.5	58
56	Clarification of electromagnetic responses in split-ring resonators from electric excitation. , 2008, , .		0
57	A Catalytic and Interfacing PEDOT:PSS/CuPc Polymerized on Cloth Fiber to Electroâ€Metalize Stretchable Copper Conductive Pattern. Advanced Materials Interfaces, 0, , 2101462.	1.9	2