
Catherine A Musselman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Cell Chemical Biology, 2022, 29, 555-571.e11.	2.5	12
2	Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chemical Biology, 2022, 17, 495-502.	1.6	12
3	Characterization of functional disordered regions within chromatin-associated proteins. IScience, 2021, 24, 102070.	1.9	27
4	Evolutionary Conservation of Structural and Functional Coupling between the BRM AT-Hook and Bromodomain. Journal of Molecular Biology, 2021, 433, 166845.	2.0	4
5	Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility. Nucleic Acids Research, 2021, 49, 4750-4767.	6.5	29
6	Histone Tail Conformations: A Fuzzy Affair with DNA. Trends in Biochemical Sciences, 2021, 46, 564-578.	3.7	56
7	Optimization of Ligands Using Focused DNA-Encoded Libraries To Develop a Selective, Cell-Permeable CBX8 Chromodomain Inhibitor. ACS Chemical Biology, 2020, 15, 112-131.	1.6	53
8	The molecular basis of selective DNA binding by the BRG1 AT-hook and bromodomain. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194566.	0.9	13
9	The EZH2 SANT1 domain is a histone reader providing sensitivity to the modification state of the H4 tail. Scientific Reports, 2019, 9, 987.	1.6	18
10	Chromatin and epigenetic signaling pathways. , 2019, , 1-23.		0
11	RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression. European Urology, 2019, 76, 157-166.	0.9	19
12	Strategies for Generating Modified Nucleosomes: Applications within Structural Biology Studies. ACS Chemical Biology, 2019, 14, 579-586.	1.6	9
13	Engagement of DNA and H3K27me3 by the CBX8 chromodomain drives chromatin association. Nucleic Acids Research, 2019, 47, 2289-2305.	6.5	27
14	The PHD finger of Spp1 mediates histone modification cross-talk. Biochemical Journal, 2019, 476, 2351-2354.	1.7	1
15	E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science, 2018, 362, .	6.0	78
16	Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules, 2018, 23, 2614.	1.7	51
17	A histone reader becomes the readout. Journal of Biological Chemistry, 2018, 293, 7486-7487.	1.6	2
18	The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome. ELife, 2018, 7, .	2.8	104

CATHERINE A MUSSELMAN

1

#	Article	IF	CITATIONS
19	The EZH2 SANT1 Domain is a Histone Reader Providing Sensitivity to the Modification State of the H4 Tail. Biophysical Journal, 2018, 114, 445a.	0.2	Ο
20	Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity. Molecular Therapy, 2017, 25, 1353-1362.	3.7	18
21	Covalent Modifications of Histone H3K9 Promote Binding of CHD3. Cell Reports, 2017, 21, 455-466.	2.9	36
22	DNA binding drives the association of BRG1/hBRM bromodomains with nucleosomes. Nature Communications, 2017, 8, 16080.	5.8	61
23	Accessibility of the histone H3 tail in the nucleosome for binding of paired readers. Nature Communications, 2017, 8, 1489.	5.8	67
24	Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nature Immunology, 2016, 17, 695-703.	7.0	188
25	Preparation, Biochemical Analysis, and Structure Determination of Methyllysine Readers. Methods in Enzymology, 2016, 573, 345-362.	0.4	3
26	Structural Plasticity of Methyllysine Recognition by the Tandem Tudor Domain of 53BP1. Structure, 2015, 23, 312-321.	1.6	32
27	The structural basis of urea-induced protein unfolding in β-catenin. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2840-2847.	2.5	15
28	Inhibition of histone binding by supramolecular hosts. Biochemical Journal, 2014, 459, 505-512.	1.7	48
29	Photoactive spatial proximity probes for binding pairs with epigenetic marks. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 290, 101-108.	2.0	1
30	Towards understanding methyllysine readout. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 686-693.	0.9	51
31	Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nature Communications, 2013, 4, 2969.	5.8	77
32	Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 787-792.	3.3	96
33	Perceiving the epigenetic landscape through histone readers. Nature Structural and Molecular Biology, 2012, 19, 1218-1227.	3.6	688
34	Emerging methodologies to investigate lipid–protein interactions. Integrative Biology (United) Tj ETQq0 0 0 rş	gBT/Qverl	ock 10 Tf 50
35	Multivalent Recognition of Histone Tails by the PHD Fingers of CHD5. Biochemistry, 2012, 51, 6534-6544.	1.2	46

#	Article	IF	CITATIONS
37	Handpicking epigenetic marks with PHD fingers. Nucleic Acids Research, 2011, 39, 9061-9071.	6.5	175
38	Plant Homeodomain (PHD) Fingers of CHD4 Are Histone H3-binding Modules with Preference for Unmodified H3K4 and Methylated H3K9. Journal of Biological Chemistry, 2011, 286, 11779-11791.	1.6	147
39	Methyl fingerprinting of the nucleosome reveals the molecular mechanism of high-mobility group nucleosomal-2 (HMGN2) association. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12189-12190.	3.3	3
40	Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nature Chemical Biology, 2010, 6, 283-290.	3.9	115
41	Referencing Strategy for the Direct Comparison of Nuclear Magnetic Resonance and Molecular Dynamics Motional Parameters in RNA. Journal of Physical Chemistry B, 2010, 114, 929-939.	1.2	18
42	Structural Insight into p53 Recognition by the 53BP1 Tandem Tudor Domain. Journal of Molecular Biology, 2010, 398, 489-496.	2.0	50
43	Molecular Mechanism of MLL PHD3 and RNA Recognition by the Cyp33 RRM Domain. Journal of Molecular Biology, 2010, 400, 145-154.	2.0	40
44	Binding of the MLL PHD3 Finger to Histone H3K4me3 Is Required for MLL-Dependent Gene Transcription. Journal of Molecular Biology, 2010, 400, 137-144.	2.0	88
45	NMR assignments and histone specificity of the ING2 PHD finger. Magnetic Resonance in Chemistry, 2009, 47, 352-358.	1.1	9
46	Membrane insertion of the FYVE domain is modulated by pH. Proteins: Structure, Function and Bioinformatics, 2009, 76, 852-860.	1.5	58
47	Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochemical Journal, 2009, 423, 179-187.	1.7	106
48	PHD Fingers: Epigenetic Effectors and Potential Drug Targets. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 314-323.	3.4	101
49	Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis. Biophysical Journal, 2008, 95, 3906-3915.	0.2	65
50	iRED Analysis of TAR RNA Reveals Motional Coupling, Long-Range Correlations, and a Dynamical Hinge. Biophysical Journal, 2007, 93, 411-422.	0.2	31
51	Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nature Protocols, 2007, 2, 1536-1546.	5.5	56
52	Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings. Journal of Biomolecular NMR, 2006, 36, 235-249.	1.6	54