List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394333/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Asymmetric Hybrid Siloxane Side Chains for Enhanced Mobility and Mechanical Properties of<br>Diketopyrrolopyrroleâ€Based Polymers. Macromolecular Rapid Communications, 2022, 43, e2100636.                                                 | 3.9  | 6         |
| 2  | Deep Ultraviolet Light Stimulated Synaptic Transistors Based on Poly(3-hexylthiophene) Ultrathin<br>Films. ACS Applied Materials & Interfaces, 2022, 14, 11718-11726.                                                                       | 8.0  | 19        |
| 3  | Side Chain Engineering: Achieving Stretch-Induced Molecular Orientation and Enhanced Mobility in Polymer Semiconductors. Chemistry of Materials, 2022, 34, 2696-2707.                                                                       | 6.7  | 17        |
| 4  | Small molecules based on strongly electron-deficient aza-isatinylidene malononitrile for solution-processed n-type field-effect transistors. Synthetic Metals, 2022, 287, 117071.                                                           | 3.9  | 0         |
| 5  | Role of Molecular Weight in the Mechanical Properties and Charge Transport of Conjugated<br>Polymers Containing Siloxane Side Chains. Macromolecular Rapid Communications, 2022, , 2200149.                                                 | 3.9  | 4         |
| 6  | Tuning of polymer-wall surface components and its effect on the optoelectronic performance of<br>liquid crystal devices with polymer walls. Molecular Crystals and Liquid Crystals, 2022, 736, 93-102.                                      | 0.9  | 1         |
| 7  | Aza-substitution on naphthalene diimide-based conjugated polymers for n-type bottom gate/top contact polymer transistors under ambient conditions. Journal of Materials Chemistry C, 2021, 9, 633-639.                                      | 5.5  | 7         |
| 8  | A Novel Multilevel Nonvolatile Solarâ€Blind Deep Ultraviolet Photoelectric Memory Based on an<br>Organic Field Effect Transistor. Advanced Optical Materials, 2021, 9, 2002256.                                                             | 7.3  | 11        |
| 9  | Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy<br>Letters, 2021, 6, 1901-1911.                                                                                                            | 17.4 | 17        |
| 10 | Taming Charge Transport and Mechanical Properties of Conjugated Polymers with Linear Siloxane Side<br>Chains. Macromolecules, 2021, 54, 5440-5450.                                                                                          | 4.8  | 18        |
| 11 | Ultrathin Polythiophene Films Prepared by Vertical Phase Separation for Highly Stretchable Organic<br>Fieldâ€Effect Transistors. Advanced Electronic Materials, 2021, 7, 2100591.                                                           | 5.1  | 11        |
| 12 | Circularly Polarized Photodetectors Based on Chiral Materials: A Review. Frontiers in Chemistry, 2021, 9, 711488.                                                                                                                           | 3.6  | 42        |
| 13 | Intrinsically Stretchable <i>n</i> -Type Polymer Semiconductors through Side Chain Engineering.<br>Macromolecules, 2021, 54, 8849-8859.                                                                                                     | 4.8  | 27        |
| 14 | Solutionâ€Processed Ultrathin Semiconductor Films for Highâ€Performance Ammonia Sensors. Advanced<br>Materials Interfaces, 2021, 8, 2100493.                                                                                                | 3.7  | 4         |
| 15 | Diaza-substituted conjugated polymers based on naphthalene diimide for n-type field-effect transistors. Dyes and Pigments, 2021, 194, 109660.                                                                                               | 3.7  | 6         |
| 16 | Improved charge transport in fused-ring bridged hemi-isoindigo-based small molecules by<br>incorporating a thiophene unit for solution-processed organic field-effect transistors. Journal of<br>Materials Chemistry C, 2020, 8, 1398-1404. | 5.5  | 11        |
| 17 | Ultrathin Polymer Nanofibrils for Solar-Blind Deep Ultraviolet Light Photodetectors Application.<br>Nano Letters, 2020, 20, 644-651.                                                                                                        | 9.1  | 38        |
| 18 | Mixed receptors of AMPA and NMDA emulated using a â€~Polka Dot'-structured two-dimensional conjugated polymer-based artificial synapse. Nanoscale Horizons, 2020, 5, 1324-1331.                                                             | 8.0  | 14        |

| #  | Article                                                                                                                                                                                                                                                                         | IF                  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| 19 | Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers.<br>Chemical Communications, 2020, 56, 11867-11870.                                                                                                                             | 4.1                 | 16        |
| 20 | Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance<br>Semiconductors Processable with Nonchlorinated Solvents. ACS Applied Materials & Interfaces,<br>2020, 12, 41832-41841.                                                       | 8.0                 | 14        |
| 21 | One-step synthesis of an acceptor–donor–acceptor small molecule based on<br>indacenodithieno[3,2-b]thiophene and benzothiadiazole units for high-performance<br>solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8,<br>14180-14185. | 5.5                 | 3         |
| 22 | Solution-processed polarized light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 9147-9162.                                                                                                                                                                       | 5.5                 | 5         |
| 23 | Enabling discrimination capability in an achiral F6BT-based organic semiconductor transistor<br><i>via</i> circularly polarized light induction. Journal of Materials Chemistry C, 2020, 8, 9271-9275.                                                                          | 5.5                 | 22        |
| 24 | Induction of circularly polarized electroluminescence from achiral<br>poly(fluorene- <i>alt</i> -benzothiadiazole) by circularly polarized light. Journal of Materials<br>Chemistry C, 2020, 8, 6521-6527.                                                                      | 5.5                 | 20        |
| 25 | Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a<br>"Strong Acceptor–Weak Donor―Strategy. ACS Applied Materials & Interfaces, 2020, 12, 17790-177                                                                               | 98 <mark>8.0</mark> | 18        |
| 26 | Acceptor–donor–acceptor molecule processed using polar non-halogenated solvents for organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 6496-6502.                                                                                                     | 5.5                 | 2         |
| 27 | An enzyme Biosensor Based on Organic Transistors for Recognizing <i>α</i> -Amino Acid Enantiomers.<br>Journal of the Electrochemical Society, 2020, 167, 067517.                                                                                                                | 2.9                 | 6         |
| 28 | Flexible and low-voltage phototransistor based on novel self-assembled phosphonic acids monolayers. Synthetic Metals, 2020, 269, 116563.                                                                                                                                        | 3.9                 | 4         |
| 29 | A regular ternary conjugated polymer bearing ï€-extended diketopyrrole and isoindigo acceptor units for field-effect transistors and photothermal conversion. Dyes and Pigments, 2019, 164, 27-34.                                                                              | 3.7                 | 10        |
| 30 | Rational molecular design for isoindigo-based polymer semiconductors with high ductility and high electrical performance. Journal of Materials Chemistry C, 2019, 7, 11639-11649.                                                                                               | 5.5                 | 16        |
| 31 | Acceptor-donor-acceptor small molecules based on fuse ring and<br>2-(2-oxindolin-3-ylidene)malononitrile derivatives for solution-processed n-type organic field-effect<br>transistors. Synthetic Metals, 2019, 256, 116143.                                                    | 3.9                 | 1         |
| 32 | Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers<br>through energy level regulation and side chain optimization. Journal of Materials Chemistry C, 2019, 7,<br>7618-7626.                                                          | 5.5                 | 23        |
| 33 | High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 8450-8456.                                                                        | 5.5                 | 12        |
| 34 | Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random<br>Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2019, 52,<br>4765-4775.                                                                      | 4.8                 | 23        |
| 35 | Aza-Based Donor-Acceptor Conjugated Polymer Nanoparticles for Near-Infrared Modulated Photothermal Conversion. Frontiers in Chemistry, 2019, 7, 359.                                                                                                                            | 3.6                 | 7         |
| 36 | Highly Sensitive Polymer Phototransistor Based on the Synergistic Effect of Chemical and Physical<br>Blending in D (Donor)–A (Acceptor) Copolymers. Advanced Electronic Materials, 2019, 5, 1900174.                                                                            | 5.1                 | 12        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Fused Heptacyclic-Based Acceptor–Donor–Acceptor Small Molecules: N-Substitution toward<br>High-Performance Solution-Processable Field-Effect Transistors. Chemistry of Materials, 2019, 31,<br>2027-2035.                                                         | 6.7  | 33        |
| 38 | Sb <sub>2</sub> S <sub>3</sub> solar cells: functional layer preparation and device performance.<br>Inorganic Chemistry Frontiers, 2019, 6, 3381-3397.                                                                                                            | 6.0  | 33        |
| 39 | Precisely Controlling the Structure of Ultrathin Semiconducting Films by a Laminating Method for<br>High-Performance Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11,<br>48147-48154.                                              | 8.0  | 8         |
| 40 | Tailoring Structure and Field-Effect Characteristics of Ultrathin Conjugated Polymer Films via Phase<br>Separation. ACS Applied Materials & Interfaces, 2018, 10, 9602-9611.                                                                                      | 8.0  | 32        |
| 41 | Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosensors and Bioelectronics, 2018, 105, 121-128.                                                                                                                           | 10.1 | 73        |
| 42 | Improved Transistor Performance of Isoindigo-Based Conjugated Polymers by Chemically Blending<br>Strongly Electron-Deficient Units with Low Content To Optimize Crystal Structure. Macromolecules,<br>2018, 51, 370-378.                                          | 4.8  | 36        |
| 43 | Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosensors and Bioelectronics, 2018, 100, 235-241.                                                                                       | 10.1 | 103       |
| 44 | Flexible, Low-Voltage, and n-Type Infrared Organic Phototransistors with Enhanced Photosensitivity via Interface Trapping Effect. ACS Applied Materials & Interfaces, 2018, 10, 36177-36186.                                                                      | 8.0  | 30        |
| 45 | FePc induced highly oriented PIID-BT conjugated polymer semiconductor with high bias-stress stability. Applied Physics Letters, 2018, 113, .                                                                                                                      | 3.3  | 4         |
| 46 | Ultrathin semiconductor films for NH3 gas sensors prepared by vertical phase separation. Synthetic Metals, 2018, 244, 20-26.                                                                                                                                      | 3.9  | 12        |
| 47 | Bis(7-aza-2-oxoindolin-3-ylidene)dihydropyrroloindole-dione based Dâ^'A conjugated polymers for electron and ambipolar organic thin film transistors. Dyes and Pigments, 2018, 159, 238-244.                                                                      | 3.7  | 3         |
| 48 | Incorporation of Heteroatoms in Conjugated Polymers Backbone toward Air-Stable, High-Performance<br><i>n</i> -Channel Unencapsulated Polymer Transistors. Chemistry of Materials, 2018, 30, 5451-5459.                                                            | 6.7  | 55        |
| 49 | Tuning the Energy Levels of Aza-Heterocycle-Based Polymers for Long-Term <i>n</i> -Channel<br>Bottom-Gate/Top-Contact Polymer Transistors. Macromolecules, 2018, 51, 5704-5712.                                                                                   | 4.8  | 20        |
| 50 | One-pot synthesized ABA tri-block copolymers for high-performance organic field-effect transistors.<br>Polymer Chemistry, 2018, 9, 4517-4522.                                                                                                                     | 3.9  | 11        |
| 51 | Selective recognition of Histidine enantiomers using novel molecularly imprinted organic transistor sensor. Organic Electronics, 2018, 61, 254-260.                                                                                                               | 2.6  | 25        |
| 52 | Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect<br>Transistors. ACS Applied Materials & Interfaces, 2018, 10, 21510-21517.                                                                                               | 8.0  | 50        |
| 53 | Helical Nanofibrils of Block Copolymer for High-Performance Ammonia Sensors. ACS Applied<br>Materials & Interfaces, 2018, 10, 22504-22512.                                                                                                                        | 8.0  | 30        |
| 54 | Highly sensitive detection of gallic acid based on organic electrochemical transistors with poly(diallyldimethylammonium chloride) and carbon nanomaterials nanocomposites functionalized gate electrodes. Sensors and Actuators B: Chemical, 2017, 246, 235-242. | 7.8  | 41        |

| #  | Article                                                                                                                                                                                                                         | IF       | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 55 | Flexible and low-voltage organic phototransistors. RSC Advances, 2017, 7, 11572-11577.                                                                                                                                          | 3.6      | 23        |
| 56 | Organic Field-Effect Transistors with Macroporous Semiconductor Films as High-Performance<br>Humidity Sensors. ACS Applied Materials & Interfaces, 2017, 9, 14974-14982.                                                        | 8.0      | 62        |
| 57 | Facile green synthesis of isoindigo-based conjugated polymers using aldol polycondensation. Polymer Chemistry, 2017, 8, 3448-3456.                                                                                              | 3.9      | 38        |
| 58 | Bis(2-oxo-7-azaindolin-3-ylidene)benzodifuran-dione-based donor–acceptor polymers for<br>high-performance n-type field-effect transistors. Polymer Chemistry, 2017, 8, 2381-2389.                                               | 3.9      | 17        |
| 59 | Effective Use of Electrically Insulating Units in Organic Semiconductor Thin Films for<br>Highâ€Performance Organic Transistors. Advanced Electronic Materials, 2017, 3, 1600240.                                               | 5.1      | 80        |
| 60 | Solutionâ€Processed Microporous Semiconductor Films for Highâ€Performance Chemical Sensors.<br>Advanced Materials Interfaces, 2016, 3, 1600518.                                                                                 | 3.7      | 47        |
| 61 | Benzodithiophenedione and diketopyrrolopyrrole based conjugated copolymers for organic thin-film transistors by structure modulation. Dyes and Pigments, 2016, 126, 20-28.                                                      | 3.7      | 15        |
| 62 | Enhanced near-infrared photoresponse of organic phototransistors based on single-component<br>donor–acceptor conjugated polymer nanowires. Nanoscale, 2016, 8, 7738-7748.                                                       | 5.6      | 65        |
| 63 | An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. Journal of Materials Chemistry C, 2015, 3, 3599-3606.                                                                                          | 5.5      | 93        |
| 64 | A new thieno-isoindigo derivative-based D–A polymer with very low bandgap for high-performance<br>ambipolar organic thin-film transistors. Polymer Chemistry, 2015, 6, 3970-3978.                                               | 3.9      | 36        |
| 65 | Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione-based D–A polymers for high-performance n-channel<br>transistors. Polymer Chemistry, 2015, 6, 2531-2540.                                                                         | 3.9      | 32        |
| 66 | Phototransistors based on a donor–acceptor conjugated polymer with a high response speed. Journal of Materials Chemistry C, 2015, 3, 10734-10741.                                                                               | 5.5      | 26        |
| 67 | A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. Chemical Communications, 2014, 50, 3180.                                                                         | 4.1      | 72        |
| 68 | One pot synthesis of a poly(3-hexylthiophene)-b-poly(quinoxaline-2,3-diyl) rod–rod diblock copolymer<br>and its tunable light emission properties. Polymer Chemistry, 2013, 4, 4588.                                            | 3.9      | 34        |
| 69 | Oneâ€pot synthesis of conjugated poly(3â€hexylthiophene)â€ <i>b</i> â€poly(phenyl isocyanide) hybrid rod–ro<br>block copolymers and its selfâ€assembling properties. Journal of Polymer Science Part A, 2013, 51,<br>2939-2947. | d<br>2.3 | 30        |
| 70 | Self-stratified semiconductor/dielectric polymer blends: vertical phase separation for facile fabrication of organic transistors. Journal of Materials Chemistry C, 2013, 1, 3989.                                              | 5.5      | 59        |
| 71 | Polymer blends with semiconducting nanowires for organic electronics. Journal of Materials<br>Chemistry, 2012, 22, 4244.                                                                                                        | 6.7      | 66        |
| 72 | Synthesis and characterization of thieno[3,4-c]pyrrole-4,6-dione and<br>pyrrolo[3,4-c]pyrrole-1,4-dione-based random polymers for photovoltaic applications. Polymer, 2012,<br>53, 4407-4412.                                   | 3.8      | 24        |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Inkjetâ€Printed Singleâ€Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in<br>Insulating Polymers. Advanced Functional Materials, 2010, 20, 3292-3297.                            | 14.9 | 100       |
| 74 | Organic Thinâ€film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer.<br>Advanced Materials, 2009, 21, 1349-1353.                                                             | 21.0 | 214       |
| 75 | 44.4: <i>Invited Paper</i> : Semiconducting Nanofibers Embedded in Insulating Polymer for Organic<br>Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2009, 40, 664-665. | 0.3  | Ο         |
| 76 | Versatile Use of Verticalâ€Phaseâ€Separationâ€Induced Bilayer Structures in Organic Thinâ€Film Transistors.<br>Advanced Materials, 2008, 20, 1141-1145.                                                 | 21.0 | 209       |
| 77 | Tensile properties of two-dimensional poly(3-hexyl thiophene) thin films as a function of thickness.<br>Journal of Materials Chemistry C, 0, , .                                                        | 5.5  | 1         |