Lu-Yu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394082/publications.pdf Version: 2024-02-01

Ιπ-Λη Δηση

#	Article	IF	CITATIONS
1	A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37, 2602-2611.	1.0	754
2	APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature Communications, 2015, 6, 6779.	5.8	405
3	Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death and Differentiation, 2017, 24, 1111-1120.	5.0	268
4	LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nature Communications, 2018, 9, 29.	5.8	247
5	MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury Through Targeting FADD. Circulation Research, 2015, 117, 352-363.	2.0	227
6	The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death and Differentiation, 2019, 26, 1299-1315.	5.0	177
7	Oxidative Modification of miR-184 Enables It to Target Bcl-xL and Bcl-w. Molecular Cell, 2015, 59, 50-61.	4.5	141
8	Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation, 2019, 139, 2668-2684.	1.6	125
9	The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nature Cell Biology, 2020, 22, 1319-1331.	4.6	93
10	A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ, 2018, 6, e5503.	0.9	89
11	E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nature Communications, 2015, 6, 7619.	5.8	87
12	Foxo3a inhibits mitochondrial fission and protects against doxorubicin-induced cardiotoxicity by suppressing MIEF2. Free Radical Biology and Medicine, 2017, 104, 360-370.	1.3	34
13	The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 suppression. Cell Death and Differentiation, 2022, 29, 527-539.	5.0	33
14	NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Theranostics, 2020, 10, 553-566.	4.6	32
15	PIWIâ€Interacting RNA HAAPIR Regulates Cardiomyocyte Death After Myocardial Infarction by Promoting NAT10â€Mediated ac ⁴ C Acetylation of Tfec mRNA. Advanced Science, 2022, 9, e2106058.	5.6	28
16	MicroRNA-2861 regulates programmed necrosis in cardiomyocyte by impairing adenine nucleotide translocase 1 expression. Free Radical Biology and Medicine, 2016, 91, 58-67.	1.3	24
17	The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovascular Drugs and Therapy, 2023, 37, 181-198.	1.3	17
18	Emerging functions of piwiâ€interacting RNAs in diseases. Journal of Cellular and Molecular Medicine, 2021, 25, 4893-4901.	1.6	16

#	Article	IF	CITATIONS
19	Effects of REDOX in Regulating and Treatment of Metabolic and Inflammatory Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	13