Waldo Argüelles-Monal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394077/publications.pdf

Version: 2024-02-01

59 4,021 papers citations

30 h-index 56 g-index

62 all docs

62 docs citations 62 times ranked

5482 citing authors

#	Article	IF	CITATIONS
1	An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001, 42, 3569-3580.	1.8	1,132
2	Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials, 1999, 20, 1869-1878.	5.7	261
3	Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromolecular Bioscience, 2003, 3, 511-520.	2.1	223
4	The adsorption of mercuric ions by chitosan. Journal of Applied Polymer Science, 1992, 46, 1147-1150.	1.3	153
5	A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 1993, 39, 21-28.	2.7	152
6	Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polymers, 2004, 56, 41-45.	5.1	142
7	Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers, 2018, 10, 342.	2.0	105
8	Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polymer Bulletin, 2005, 55, 367-375.	1.7	102
9	Rheological study of the chitosan/glutaraldehyde chemical gel system. Polymer Gels and Networks, 1998, 6, 429-440.	0.6	86
10	Chitin and Chitosan: Major Sources, Properties and Applications. , 2008, , 517-542.		84
11	Thermoresponsive Behavior of Chitosan- <i>g</i> Nli>-isopropylacrylamide Copolymer Solutions. Biomacromolecules, 2009, 10, 1633-1641.	2.6	76
12	Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Advances, 2016, 6, 59250-59256.	1.7	72
13	N-(furfural) chitosan hydrogels based on Diels–Alder cycloadditions and application as microspheres for controlled drug release. Carbohydrate Polymers, 2015, 128, 220-227.	5.1	71
14	Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight. International Journal of Biological Macromolecules, 2004, 34, 127-133.	3.6	66
15	Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer, 2000, 41, 2373-2378.	1.8	64
16	Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocolloids, 2004, 18, 865-871.	5.6	64
17	Molecularly Imprinted Chitosanâ^'Genipin Hydrogels with Recognition Capacity toward <i>o</i> -Xylene. Biomacromolecules, 2007, 8, 3355-3364.	2.6	64
18	Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and pH-Responsive Chitosan Hydrogels. Macromolecular Bioscience, 2003, 3, 612-619.	2.1	59

#	Article	IF	CITATIONS
19	Study of the interpolyelectrolyte reaction between chitosan and carboxymethyl cellulose. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 693-697.	1.1	58
20	Determination of Chitin and Protein Contents During the Isolation of Chitin from Shrimp Waste. Macromolecular Bioscience, 2006, 6, 340-347.	2.1	53
21	A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Matter, 2011, 7, 5847.	1.2	50
22	Enhanced Antifungal Effect of Chitosan/Pepper Tree (<i>Schinus molle</i>) Essential Oil Bionanocomposites on the Viability of <i> Aspergillus parasiticus</i> Spores. Journal of Nanomaterials, 2016, 2016, 1-10.	1,5	50
23	Chitosan based polyelectrolyte complexes. Macromolecular Symposia, 2001, 168, 103-116.	0.4	48
24	Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	44
25	Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly(N-vinylcaprolactam). Carbohydrate Polymers, 2015, 134, 92-101.	5.1	43
26	Chemical Characteristics and Functional Properties of Chitosan. , 2016, , 3-31.		43
27	SUPERCRITICAL CO2/ETHANOL EXTRACTION OF ASTAXANTHIN FROM BLUE CRAB (CALLINECTES SAPIDUS) SHELL WASTE. Journal of Food Process Engineering, 2001, 24, 101-112.	1.5	42
28	Study of the stoichiometric polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polymer Bulletin, 1990, 23, 307-313.	1.7	41
29	Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polymer Bulletin, 2007, 58, 225-234.	1.7	41
30	Linseed pectin: gelling properties and performance as an encapsulation matrix for shark liver oil. Food Hydrocolloids, 2004, 18, 293-304.	5.6	38
31	Diffusion Through Membranes of the Polyelectrolyte Complex of Chitosan and Alginate. Macromolecular Bioscience, 2003, 3, 535-539.	2.1	35
32	Physical properties and antibacterial activity of chitosan/acemannan mixed systems. Carbohydrate Polymers, 2015, 115, 707-714.	5.1	35
33	Kinetics of Gelation and Thermal Sensitivity of N-Isobutyryl Chitosan Hydrogelsâ€. Biomacromolecules, 2005, 6, 2408-2415.	2.6	29
34	Aerogels from Chitosan Solutions in Ionic Liquids. Polymers, 2017, 9, 722.	2.0	27
35	Sorption and desorption of water vapour by membranes of the polyelectrolyte complex of chitosan and carboxymethyl cellulose. Polymer International, 1995, 38, 45-52.	1.6	26
36	Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polymer Bulletin, 1993, 31, 471-478.	1.7	24

#	Article	IF	Citations
37	Thermodynamics of complex formation of polyacrylic acid with poly(N-vinyl-2-pyrrolidone) and chitosan. Polymer Bulletin, 1996, 37, 127-134.	1.7	24
38	Supercritical CO ₂ dried chitosan nanoparticles: production and characterization. RSC Advances, 2017, 7, 30879-30885.	1.7	24
39	Interpenetrated Chitosan-Poly(Acrylic Acid-Co-Acrylamide) Hydrogels. Synthesis, Characterization and Sustained Protein Release Studies. Materials Sciences and Applications, 2011, 02, 509-520.	0.3	23
40	Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydrate Polymers, 2011, 86, 1336-1343.	5.1	22
41	Chitin and chitosan. Developments in Food Science, 2000, 41, 265-308.	0.0	21
42	Title is missing!. Angewandte Makromolekulare Chemie, 1993, 207, 1-8.	0.3	20
43	Furan–chitosan hydrogels based on click chemistry. Iranian Polymer Journal (English Edition), 2015, 24, 349-357.	1.3	20
44	Temperature stimuliâ€responsive nanoparticles from chitosanâ€∢i>graftà6€poly(<i>N</i> à6€vinylcaprolactam) as a drug delivery system. Journal of Applied Polymer Science, 2019, 136, 47831.	1.3	18
45	Production and characterization of supercritical CO2 dried chitosan nanoparticles as novel carrier device. Carbohydrate Polymers, 2018, 198, 556-562.	5.1	17
46	Development and characterization of nanocapsules comprising dodecyltrimethylammonium chloride and \hat{l}^{e} -carrageenan. Colloids and Surfaces B: Biointerfaces, 2011, 86, 242-246.	2.5	15
47	Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles. Nanomaterials, 2018, 8, 425.	1.9	13
48	Chitosan Hydrogels Based on the Diels–Alder Click Reaction: Rheological and Kinetic Study. Polymers, 2022, 14, 1202.	2.0	13
49	Preparation of a novel polyampholyte from chitosan and citric acid. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 735-740.	1.1	12
50	Gelation processes in the non-stoichiometric polylectrolyte–surfactant complex between κ-carrageenan and dodecyltrimethylammonium chloride in KCl. Soft Matter, 2011, 7, 2103.	1.2	12
51	Conformational study on the thermal transition of chitosan-g-poly(N-vinylcaprolactam) in aqueous solution. Colloid and Polymer Science, 2016, 294, 555-563.	1.0	9
52	Chitin and Chitosan in Gel Network Systems. ACS Symposium Series, 2002, , 102-121.	0.5	7
53	Acemannan Gels and Aerogels. Polymers, 2019, 11, 330.	2.0	7
54	Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Applied Microbiology and Biotechnology, 2019, 103, 2985-3000.	1.7	7

#	Article	IF	CITATIONS
55	Chitosan-Based Thermosensitive Materials. , 2017, , .		6
56	Phytotoxicity, cytotoxicity, and in vivo antifungal efficacy of chitosan nanobiocomposites on prokaryotic and eukaryotic cells. Environmental Science and Pollution Research, 2021, 28, 3051-3065.	2.7	5
57	Synthesis of regioselective chitosan copolymers with \hat{l}^2 -cyclodextrin and poly(N-isopropyl acrylamide). Journal of Polymer Research, 2020, 27, 1.	1.2	4
58	Effect of chitosan on the gelation of \hat{I}^2 -carrageenan under various salt conditions. , 2000, , 211-216.		3
59	Métodos de preparación de nanopartÃculas de quitosano: una revisión. Biotecnia, 2019, 21, 13-25.	0.1	2