Stephan Riek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6393952/publications.pdf

Version: 2024-02-01

117625 118850 4,257 97 34 citations h-index papers

g-index 104 104 104 4084 docs citations times ranked citing authors all docs

62

#	Article	IF	Citations
1	Interaction of hand orientations during familiarization of a goal-directed aiming task. Human Movement Science, 2022, 83, 102955.	1.4	O
2	Cumulative distribution functions: An alternative approach to examine the triggering of prepared motor actions in the StartReact effect. European Journal of Neuroscience, 2021, 53, 1545-1568.	2.6	8
3	Acoustic stimulation increases implicit adaptation in sensorimotor adaptation. European Journal of Neuroscience, 2021, 54, 5047-5062.	2.6	4
4	Pushing attention to one side: Force field adaptation alters neural correlates of orienting and disengagement of spatial attention. European Journal of Neuroscience, 2019, 49, 120-136.	2.6	3
5	Triggering Mechanisms for Motor Actions: The Effects of Expectation on Reaction Times to Intense Acoustic Stimuli. Neuroscience, 2018, 393, 226-235.	2.3	26
6	Unilateral movement preparation causes taskâ€specific modulation of TMS responses in the passive, opposite limb. Journal of Physiology, 2018, 596, 3725-3738.	2.9	12
7	Do we know what we need? Preference for feedback about accurate performances does not benefit sensorimotor learning Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1294-1302.	0.9	3
8	Unexpected acoustic stimulation during action preparation reveals gradual re-specification of movement direction. Neuroscience, 2017, 348, 23-32.	2.3	20
9	A novel training device for tip control in colonoscopy: preliminary validation and efficacy as a training tool. Surgical Endoscopy and Other Interventional Techniques, 2017, 31, 5364-5371.	2.4	5
10	Assessment of colorectal polyp recognition skill: development and validation of an objective test. Surgical Endoscopy and Other Interventional Techniques, 2017, 31, 2426-2436.	2.4	6
11	Assessing colonoscopic inspection skill using a virtual withdrawal simulation: a preliminary validation of performance metrics. BMC Medical Education, 2017, 17, 118.	2.4	6
12	Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation. PLoS ONE, 2017, 12, e0179977.	2.5	21
13	The efficacy of training insertion skill on a physical model colonoscopy simulator. Endoscopy International Open, 2016, 04, E1252-E1260.	1.8	5
14	Savings for visuomotor adaptation require prior history of error, not prior repetition of successful actions. Journal of Neurophysiology, 2016, 116, 1603-1614.	1.8	48
15	Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms. Journal of Neurophysiology, 2016, 116, 2260-2271.	1.8	14
16	Strength Training Biases Goal-Directed Aiming. Medicine and Science in Sports and Exercise, 2016, 48, 1835-1846.	0.4	14
17	Electric and acoustic stimulation during movement preparation can facilitate movement execution in healthy participants and stroke survivors. Neuroscience Letters, 2016, 618, 134-138.	2.1	26
18	A competency framework for colonoscopy training derived from cognitive task analysis techniques and expert review. BMC Medical Education, 2015, 15, 216.	2.4	17

#	Article	IF	CITATIONS
19	The facilitation of motor actions by acoustic and electric stimulation. Psychophysiology, 2015, 52, 1698-1710.	2.4	18
20	The effects of preparation and acoustic stimulation on contralateral and ipsilateral corticospinal excitability. Human Movement Science, 2015, 42, 81-88.	1.4	11
21	Corticospinal excitability during imagined and observed dynamic force production tasks: Effortfulness matters. Neuroscience, 2015, 290, 398-405.	2.3	26
22	The effect of attention on the release of anticipatory timing actions Behavioral Neuroscience, 2014, 128, 548-555.	1.2	14
23	Startle evoked movement is delayed in older adults: implications for brainstem processing in the elderly. Physiological Reports, 2014, 2, e12025.	1.7	21
24	Concurrent 3-D Sonifications Enable the Head-Up Monitoring of Two Interrelated Aircraft Navigation Instruments. Human Factors, 2014, 56, 1414-1427.	3.5	3
25	Corticospinal modulation induced by sounds depends on action preparedness. Journal of Physiology, 2014, 592, 153-169.	2.9	55
26	Visual Spatial Attention Has Opposite Effects on Bidirectional Plasticity in the Human Motor Cortex. Journal of Neuroscience, 2014, 34, 1475-1480.	3.6	26
27	The early release of actions by loud sounds in muscles with distinct connectivity. Experimental Brain Research, 2014, 232, 3797-3802.	1.5	22
28	Physiological measurement of anxiety to evaluate performance in simulation training. Cognition, Technology and Work, 2014, 16, 203-210.	3.0	18
29	Using Pupillometry and Electromyography to Track Positive and Negative Affect During Flight Simulation. Aviation Psychology and Applied Human Factors, 2014, 4, 23-32.	0.4	18
30	lpsilateral corticospinal responses to ballistic training are similar for various intensities and timings of <scp>TMS</scp> . Acta Physiologica, 2013, 207, 385-396.	3.8	14
31	Long term language recovery subsequent to low frequency rTMS in chronic non-fluent aphasia. NeuroRehabilitation, 2013, 32, 915-928.	1.3	60
32	Investigating the neural basis of stuttering using transcranial magnetic stimulation: Preliminary case discussions. Speech, Language and Hearing, 2013, 16, 18-27.	1.0	3
33	Longitudinal modulation of N400 in chronic non-fluent aphasia using low-frequency rTMS: A randomised placebo controlled trial. Aphasiology, 2012, 26, 103-124.	2.2	15
34	Visual Attentional Load Influences Plasticity in the Human Motor Cortex. Journal of Neuroscience, 2012, 32, 7001-7008.	3.6	60
35	A systematic method to quantify the presence of cross-talk in stimulus-evoked EMG responses: Implications for TMS studies. Journal of Applied Physiology, 2012, 112, 259-265.	2.5	34
36	Abdominal Palpation Haptic Device for Colonoscopy Simulation Using Pneumatic Control. IEEE Transactions on Haptics, 2012, 5, 97-108.	2.7	10

#	Article	IF	Citations
37	Improved receptive and expressive language abilities in nonfluent aphasic stroke patients after application of rTMS: An open protocol case series. Brain Stimulation, 2012, 5, 274-286.	1.6	50
38	Assessing the realism of colonoscopy simulation: the development of an instrument and systematic comparison of 4 simulators. Gastrointestinal Endoscopy, 2012, 75, 631-640.e3.	1.0	35
39	Construct validation of a physical model colonoscopy simulator. Gastrointestinal Endoscopy, 2012, 76, 144-150.	1.0	44
40	Primary motor cortex involvement in initial learning during visuomotor adaptation. Neuropsychologia, 2012, 50, 2515-2523.	1.6	13
41	The effects of low frequency Repetitive Transcranial Magnetic Stimulation (rTMS) and sham condition rTMS on behavioural language in chronic non-fluent aphasia: Short term outcomes. NeuroRehabilitation, 2011, 28, 113-128.	1.3	81
42	Early neural responses to strength training. Journal of Applied Physiology, 2011, 111, 367-375.	2.5	72
43	Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. European Journal of Neurology, 2011, 18, 935-943.	3.3	144
44	Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiologica, 2011, 202, 119-140.	3.8	128
45	Modulation of N400 in chronic non-fluent aphasia using low frequency Repetitive Transcranial Magnetic Stimulation (rTMS). Brain and Language, 2011, 116, 125-135.	1.6	33
46	Visual target separation determines the extent of generalisation between opposing visuomotor rotations. Experimental Brain Research, 2011, 212, 213-224.	1.5	20
47	Corticospinal excitability during preparation for an anticipatory action is modulated by the availability of visual information. Journal of Neurophysiology, 2011, 105, 1122-1129.	1.8	21
48	Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental Brain Research, 2010, 201, 191-207.	1.5	59
49	Repetitive Transcranial Magnetic Stimulation (rTMS) and Sham Modulation of Language Function in Non-fluent Aphasia 2 Months Post Stimulation. Procedia, Social and Behavioral Sciences, 2010, 6, 233-234.	0.5	O
50	Delayed inhibition of an anticipatory action during motion extrapolation. Behavioral and Brain Functions, 2010, 6, 22.	3.3	3
51	Superimposed vibration confers no additional benefit compared with resistance training alone. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 827-833.	2.9	13
52	M1428: A Colonoscopy Competency Framework Derived From Task Analysis. Gastrointestinal Endoscopy, 2010, 71, AB218.	1.0	2
53	T1425: A Systematic Comparison of the Realism of Four Colonoscopy Simulators. Gastrointestinal Endoscopy, 2010, 71, AB274.	1.0	0
54	Increased corticospinal excitability induced by unpleasant visual stimuli. Neuroscience Letters, 2010, 481, 135-138.	2.1	69

#	Article	IF	Citations
55	Artificial Gravity Reveals that Economy of Action Determines the Stability of Sensorimotor Coordination. PLoS ONE, 2009, 4, e5248.	2.5	17
56	Motor Unit Recruitment Strategies Are Altered during Deep-Tissue Pain. Journal of Neuroscience, 2009, 29, 10820-10826.	3 . 6	119
57	Common input to different regions of biceps brachii long head. Experimental Brain Research, 2009, 193, 351-359.	1.5	8
58	Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions. Journal of Physiology, 2009, 587, 4737-4748.	2.9	105
59	Pneumatic haptic interface fuzzy controller for simulation of abdominal palpations during colonoscopy., 2009,,.		4
60	Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement. Experimental Brain Research, 2008, 189, 421-434.	1.5	9
61	The efficacy of colour cues in facilitating adaptation to opposing visuomotor rotations. Experimental Brain Research, 2008, 191, 143-155.	1.5	23
62	The contribution of visual feedback to visuomotor adaptation: How much and when?. Brain Research, 2008, 1197, 123-134.	2.2	80
63	Generalisation between opposing visuomotor rotations when each is associated with visual targets and movements of different amplitude. Brain Research, 2008, 1219, 46-58.	2.2	1
64	Strength Versus Muscle Power-Specific Resistance Training in Community-Dwelling Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 83-91.	3.6	194
65	The Role of the Primary Motor Cortex During Skill Acquisition on a Two-Degrees-of-Freedom Movement Task. Journal of Motor Behavior, 2007, 39, 29-39.	0.9	7
66	Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Experimental Brain Research, 2007, 179, 155-165.	1.5	57
67	The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation. Experimental Brain Research, 2007, 180, 629-640.	1.5	29
68	Proprioceptive Neuromuscular Facilitation Stretching. Sports Medicine, 2006, 36, 929-939.	6.5	233
69	Neuromuscular-Skeletal Origins of Predominant Patterns of Coordination in a Rhythmic Two-Joint Arm Movement. Journal of Motor Behavior, 2006, 38, 7-14.	0.9	4
70	Neuromuscular-skeletal constraints on the acquisition of skill in a discrete torque production task. Experimental Brain Research, 2006, 175, 400-410.	1.5	4
71	Influence of predominant patterns of coordination on the exploitation of interaction torques in a two-joint rhythmic arm movement. Experimental Brain Research, 2006, 175, 439-452.	1.5	4
72	Neuromuscular Adaptation During Skill Acquisition on a Two Degree-of-Freedom Target-Acquisition Task: Dynamic Movement. Journal of Neurophysiology, 2005, 94, 3058-3068.	1.8	26

#	Article	IF	CITATIONS
73	Neuromuscular Adaptation During Skill Acquisition on a Two Degree-of-Freedom Target-Acquisition Task: Isometric Torque Production. Journal of Neurophysiology, 2005, 94, 3046-3057.	1.8	31
74	Hierarchical organisation of neuro-anatomical constraints in interlimb coordination. Human Movement Science, 2005, 24, 798-814.	1.4	19
75	Muscle Coordination During Rapid Force Production by Young and Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 232-240.	3.6	32
76	Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. Journal of Physiology, 2004, 560, 929-940.	2.9	130
77	The effects of viscous loading of the human forearm flexors on the stability of coordination. Human Movement Science, 2004, 23, 431-445.	1.4	2
78	Bimanual aiming and overt attention: one law for two hands. Experimental Brain Research, 2003, 153, 59-75.	1.5	65
79	Central and peripheral mediation of human force sensation following eccentric or concentric contractions. Journal of Physiology, 2002, 539, 913-925.	2.9	156
80	Neural compensation for compliant loads during rhythmic movement. Experimental Brain Research, 2002, 142, 409-417.	1.5	13
81	The sites of neural adaptation induced by resistance training in humans. Journal of Physiology, 2002, 544, 641-652.	2.9	185
82	Neural Adaptations to Resistance Training. Sports Medicine, 2001, 31, 829-840.	6.5	174
83	Neural Influences on Sprint Running. Sports Medicine, 2001, 31, 409-425.	6.5	174
84	Corticospinal Responses to Motor Training Revealed by Transcranial Magnetic Stimulation. Exercise and Sport Sciences Reviews, 2001, 29, 54-59.	3.0	29
85	Let your feet do the walking: constraints on the stability of bipedal coordination. Experimental Brain Research, 2001, 136, 407-412.	1.5	7
86	Changes in muscle recruitment patterns during skill acquisition. Experimental Brain Research, 2001, 138, 71-87.	1.5	46
87	Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. Journal of Neuroscience Methods, 2001, 112, 193-202.	2.5	200
88	Resistance training enhances the stability of sensorimotor coordination. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 221-227.	2.6	65
89	Interhemispheric switching mediates perceptual rivalry. Current Biology, 2000, 10, 383-392.	3.9	108
90	Musculo-skeletal constraints on corticospinal input to upper limb motoneurones during coordinated movements. Human Movement Science, 2000, 19, 451-474.	1.4	21

STEPHAN RIEK

#	Article	IF	CITATION
91	Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Experimental Brain Research, 2000, 131, 196-214.	1.5	93
92	A new technique for the selective recording of extensor carpi radialis longus and brevis EMG. Journal of Electromyography and Kinesiology, 2000, 10, 249-253.	1.7	51
93	The Timing of Intralimb Coordination. Journal of Motor Behavior, 1999, 31, 113-118.	0.9	11
94	Electromyographic activity, H-reflex modulation and corticospinal input to forearm motoneurones during active and passive rhythmic movements. Human Movement Science, 1999, 18, 307-343.	1.4	50
95	A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clinical Biomechanics, 1999, 14, 477-483.	1.2	71
96	The influence of joint position on the dynamics of perception-action coupling. Experimental Brain Research, 1998, 121, 103-114.	1.5	53
97	Recruitment of motor units in human forearm extensors. Journal of Neurophysiology, 1992, 68, 100-108.	1.8	91