Aleksander Roberto Zampronio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6393395/publications.pdf

Version: 2024-02-01

Aleksander Roberto

#	Article	IF	CITATIONS
1	Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. British Journal of Pharmacology, 2004, 141, 1175-1184.	5.4	110
2	Antipyretic and anti-inflammatory properties of the ethanolic extract, dichloromethane fraction and costunolide from Magnolia ovata (Magnoliaceae). Journal of Ethnopharmacology, 2009, 124, 369-376.	4.1	69
3	Orofacial cold hyperalgesia due to infraorbital nerve constriction injury in rats: Reversal by endothelin receptor antagonists but not non-steroidal anti-inflammatory drugs. Pain, 2006, 123, 64-74.	4.2	63
4	Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides, 2013, 47, 199-206.	2.2	56
5	Effects of trophic exposure to diclofenac and dexamethasone on hematological parameters and immune response in freshwater fish. Environmental Toxicology and Chemistry, 2016, 35, 975-982.	4.3	45
6	Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature, 2015, 2, 506-521.	3.0	40
7	Induction of secretory and tumoricidal activities in peritoneal macrophages activated by an acidic heteropolysaccharide (ARAGAL) from the gum of Anadenanthera colubrina (Angico branco). Immunology Letters, 2004, 93, 189-197.	2.5	37
8	Effects of anti-inflammatory drugs in primary kidney cell culture of a freshwater fish. Fish and Shellfish Immunology, 2014, 40, 296-303.	3.6	35
9	Naphthoquinones of <i>Sinningia reitzii</i> and Anti-inflammatory/Antinociceptive Activities of 8-Hydroxydehydrodunnione. Journal of Natural Products, 2017, 80, 1837-1843.	3.0	31
10	Central endothelin ETBreceptors mediate IL-1-dependent fever induced by preformed pyrogenic factor and corticotropin-releasing factor in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R164-R171.	1.8	30
11	Endogenous opioids: role in prostaglandin-dependent and -independent fever. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R411-R420.	1.8	29
12	Kinin B1 and B2 receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats. Neuropeptides, 2010, 44, 87-92.	2.2	29
13	A timeâ€dependent contribution of hippocampal CB ₁ , CB ₂ and PPARγ receptors to cannabidiolâ€induced disruption of fear memory consolidation. British Journal of Pharmacology, 2020, 177, 945-957.	5.4	29
14	The contribution of transient receptor potential ankyrin 1 (TRPA1) to the in vivo nociceptive effects of prostaglandin E2. Life Sciences, 2014, 105, 7-13.	4.3	26
15	Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever. Journal of Neuroimmunology, 2016, 293, 1-7.	2.3	24
16	Opposing Actions of Endothelin-1 on Glutamatergic Transmission onto Vasopressin and Oxytocin Neurons in the Supraoptic Nucleus. Journal of Neuroscience, 2010, 30, 16855-16863.	3.6	21
17	Involvement of brain cytokines in zymosan-induced febrile response. Journal of Applied Physiology, 2014, 116, 1220-1229.	2.5	21
18	Necroptosis mediates the antineoplastic effects of the soluble fraction of polysaccharide from red wine in Walker-256 tumor-bearing rats. Carbohydrate Polymers, 2017, 160, 123-133.	10.2	20

Aleksander Roberto

#	Article	IF	CITATIONS
19	Central substance P NK1 receptors are involved in fever induced by LPS but not by IL-1β and CCL3/MIP-1α in rats. Brain Research, 2011, 1384, 161-169.	2.2	19
20	Etanercept reduces thermal and mechanical orofacial hyperalgesia following inflammation and neuropathic injury. European Journal of Pain, 2014, 18, 957-967.	2.8	17
21	Inhibition of immune responses and related proteins in <i>Rhamdia quelen</i> exposed to diclofenac. Environmental Toxicology and Chemistry, 2017, 36, 2092-2107.	4.3	16
22	A Naphthoquinone from Sinningia canescens Inhibits Inflammation and Fever in Mice. Inflammation, 2017, 40, 1051-1061.	3.8	16
23	Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomedicine and Pharmacotherapy, 2018, 108, 232-243.	5.6	16
24	Central mediators involved in the febrile response induced by polyinosinic–polycytidylic acid: Lack of involvement of endothelins and substance P. Journal of Neuroimmunology, 2015, 278, 100-107.	2.3	15
25	Toll-like receptor 4 (TLR4) signaling in the trigeminal ganglion mediates facial mechanical and thermal hyperalgesia in rats. Physiology and Behavior, 2020, 226, 113127.	2.1	14
26	Antinociceptive Activity of the Ethanolic Extract, Fractions, and Aggregatin D Isolated from Sinningia aggregata Tubers. PLoS ONE, 2015, 10, e0117501.	2.5	13
27	Involvement of Central Endothelin ETA and Cannabinoid CB1 Receptors and Arginine Vasopressin Release in Sepsis Induced by Cecal Ligation and Puncture in Rats. Shock, 2016, 46, 290-296.	2.1	12
28	Antinociceptive and Antiâ€inflammatory Activities of the Ethanolic Extract, Fractions and 8â€Methoxylapachenol from <i><scp>S</scp>inningia allagophylla</i> Tubers. Basic and Clinical Pharmacology and Toxicology, 2013, 113, 1-7.	2.5	10
29	Effects of binge-like ethanol exposure during adolescence on the hyperalgesia observed during sickness syndrome in rats. Pharmacology Biochemistry and Behavior, 2017, 160, 63-69.	2.9	10
30	Endocannabinoids, through opioids and prostaglandins, contribute to fever induced by key pyrogenic mediators. Brain, Behavior, and Immunity, 2016, 51, 204-211.	4.1	9
31	Effects of Binge-Like Ethanol Exposure During Adolescence on the Febrile Response in Rats. Alcoholism: Clinical and Experimental Research, 2017, 41, 507-515.	2.4	9
32	Central mediators of the zymosan-induced febrile response. Journal of Basic and Clinical Physiology and Pharmacology, 2017, 28, 555-562.	1.3	9
33	Nimesulide-induced antipyresis in rats involves both cyclooxygenase-dependent and independent mechanisms. European Journal of Pharmacology, 2006, 543, 181-189.	3.5	8
34	Immune-mediated febrile response in female rats: Role of central hypothalamic mediators. Scientific Reports, 2020, 10, 4073.	3.3	6
35	Intermittent binge-like ethanol exposure during adolescence attenuates the febrile response by reducing brown adipose tissue thermogenesis in rats. Drug and Alcohol Dependence, 2020, 209, 107904.	3.2	5
36	Role of central endothelin-1 in hyperalgesia, anhedonia, and hypolocomotion induced by endotoxin in male rats. Experimental Brain Research, 2021, 239, 267-277.	1.5	5

Aleksander Roberto

#	Article	IF	CITATIONS
37	Analgesic effects of the ethanolic extract from Magnolia ovata (Magnoliaceae) trunk bark and of N-acetylxylopine, a semi-synthetic analogue of xylopine. Phytomedicine, 2011, 18, 143-147.	5.3	4
38	Role of Glucocorticoids in Febrile Response in Rabbits. Annals of the New York Academy of Sciences, 1997, 813, 327-337.	3.8	3
39	Fever Induced by Zymosan A and Polyinosinic-Polycytidylic Acid in Female Rats: Influence of Sex Hormones and the Participation of Endothelin-1. Inflammation, 2021, 44, 321-333.	3.8	3
40	Change in prostaglandin signaling during sickness syndrome hyperalgesia after ovariectomy in female rats. Behavioural Brain Research, 2021, 410, 113368.	2.2	2
41	ETA receptors are involved in the febrile response induced by high dose of bacterial endotoxin. Journal of Thermal Biology, 2021, 95, 102804.	2.5	0
42	Effect of MKâ€801, memantine and lamotrigine on cold and heat hypernociception in trigeminal neuropathic pain. FASEB Journal, 2006, 20, A777.	0.5	0
43	Cholinergic control of inflammatory and febrile responses to endotoxin. FASEB Journal, 2007, 21, A441.	0.5	0