Diane M Beckles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639314/publications.pdf

Version: 2024-02-01

55 2,624 24 49 g-index

57 57 57 57 3143

57 57 57 3143
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum) Tj ETQq1 1 0.784314 rgl	BT/Qverlo	ck ₄₁ 0 Tf 50 7
2	Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 2019, 234-235, 80-93.	1.6	199
3	Effects of environmental factors on cereal starch biosynthesis and composition. Journal of Cereal Science, 2012, 56, 67-80.	1.8	198
4	A Cytosolic ADP-Glucose Pyrophosphorylase Is a Feature of Graminaceous Endosperms, But Not of Other Starch-Storing Organs. Plant Physiology, 2001, 125, 818-827.	2.3	167
5	Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals?. Horticulture Research, 2021, 8, 1.	2.9	122
6	Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biology, 2008, 8, 98.	1.6	109
7	How environmental stress affects starch composition and functionality in cereal endosperm. Starch/Staerke, 2014, 66, 58-71.	1.1	108
8	Characterization of the Genes Encoding the Cytosolic and Plastidial Forms of ADP-Glucose Pyrophosphorylase in Wheat Endosperm. Plant Physiology, 2002, 130, 1464-1475.	2.3	100
9	Induced Mutations in the <i>Starch Branching Enzyme II</i> (<i>SBEII</i>) Genes Increase Amylose and Resistant Starch Content in Durum Wheat. Crop Science, 2012, 52, 1754-1766.	0.8	97
10	Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Molecular Biology, 2007, 63, 651-668.	2.0	82
11	Effects of Timing and Severity of Salinity Stress on Rice (<i>Oryza sativa</i> L.) Yield, Grain Composition, and Starch Functionality. Journal of Agricultural and Food Chemistry, 2015, 63, 2296-2304.	2.4	77
12	Biochemical factors contributing to tomato fruit sugar content: a review. Fruits, 2012, 67, 49-64.	0.3	61
13	Chilling-injury of harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments. Postharvest Biology and Technology, 2012, 63, 123-128.	2.9	57
14	Crops for Carbon Farming. Frontiers in Plant Science, 2021, 12, 636709.	1.7	57
15	The impact of elevated CO ₂ concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnology and Bioengineering, 2014, 111, 1323-1331.	1.7	55
16	Structural Investigations and Morphology of Tomato Fruit Starch. Journal of Agricultural and Food Chemistry, 2009, 57, 282-291.	2.4	54
17	ADP-Glucose Pyrophosphorylase Is Located in the Plastid in Developing Tomato Fruit. Plant Physiology, 2001, 126, 261-266.	2.3	47
18	Metabolite content of harvested Micro-Tom tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock treatments as shown by GC–MS metabolic profiling. Postharvest Biology and Technology, 2012, 63, 116-122.	2.9	40

#	Article	IF	CITATIONS
19	A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Scientific Reports, 2018, 8, 9314.	1.6	37
20	Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Scientific Reports, 2019, 9, 2795.	1.6	37
21	Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics, 2009, 5, 239-252.	1.4	36
22	Postharvest internal browning of pineapple fruit originates at the phloem. Journal of Plant Physiology, 2016, 202, 121-133.	1.6	33
23	Starch Granules in Tomato Fruit Show a Complex Pattern of Degradation. Journal of Agricultural and Food Chemistry, 2009, 57, 8480-8487.	2.4	32
24	Transcriptomic Analysis of Starch Biosynthesis in the Developing Grain of Hexaploid Wheat. International Journal of Plant Genomics, 2009, 2009, 1-23.	2.2	31
25	Comparison of Leaf and Fruit Metabolism in Two Tomato (Solanum lycopersicumL.) Genotypes Varying in Total Soluble Solids. Journal of Agricultural and Food Chemistry, 2010, 58, 11790-11800.	2.4	25
26	Plant metabolomics., 2012,, 67-81.		23
27	Identification of physiological changes and key metabolites coincident with postharvest internal browning of pineapple (Ananas comosus L.) fruit. Postharvest Biology and Technology, 2018, 137, 56-65.	2.9	23
28	Metabolite Measurements., 2009,, 39-69.		23
29	Assessing variation in physicochemical, structural, and functional properties of root starches from novel Tanzanian cassava (<i>Manihot esculenta</i> Crantz.) landraces. Starch/Staerke, 2016, 68, 514-527.	1.1	22
30	Overexpression of GSK3-like Kinase 5 (OsGSK5) in rice (Oryza sativa) enhances salinity tolerance in part via preferential carbon allocation to root starch. Functional Plant Biology, 2017, 44, 705.	1.1	22
31	Chilling-stress modifies DNA methylation level in cucumber (Cucumis sativus L.) seedling radicle to regulate elongation rate. Scientia Horticulturae, 2019, 252, 14-19.	1.7	22
32	Magnetic resonance imaging provides spatial resolution of Chilling Injury in Micro-Tom tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 2014, 97, 62-67.	2.9	20
33	Postharvest quality and storage life of â€~Makapuno' coconut (Cocos nucifera L.). Scientia Horticulturae, 2014, 175, 105-110.	1.7	20
34	Genetic diversity and re-classification of coffee (Coffea canephora Pierre ex A. Froehner) from South Western Nigeria through genotyping-by-sequencing-single nucleotide polymorphism analysis. Genetic Resources and Crop Evolution, 2019, 66, 685-696.	0.8	18
35	Starch Molecular Structure Shows Little Association with Fruit Physiology and Starch Metabolism in Tomato. Journal of Agricultural and Food Chemistry, 2010, 58, 1275-1282.	2.4	17
36	Opportunities to Commercialize Cassava Production for Poverty Alleviation and Improved Food Security in Tanzania. African Journal of Food, Agriculture, Nutrition and Development, 2019, 19, 13928-13946.	0.1	17

#	Article	IF	CITATIONS
37	Postharvest handling induces changes in fruit DNA methylation status and is associated with alterations in fruit quality in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 2021, 283, 110090.	1.7	14
38	Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. Journal of Applied Genetics, 2010, 51, 431-447.	1.0	13
39	A Triticum tauschii protein kinase related to wheat PKABA1 is associated with ABA signaling and is distributed between the nucleus and cytosol. Journal of Cereal Science, 2005, 41, 333-346.	1.8	12
40	A Cytosolic Protein Kinase STY46 in Arabidopsis thaliana Is Involved in Plant Growth and Abiotic Stress Response. Plants, 2020, 9, 57.	1.6	10
41	How rice Glycogen Synthase Kinase-like 5 (OsGSK5) integrates salinity stress response to source-sink adaptation: A proposed model. Plant Signaling and Behavior, 2017, 12, e1403708.	1.2	8
42	Discriminating pineapple batches for susceptibility to postharvest internal browning. Scientia Horticulturae, 2022, 300, 111069.	1.7	8
43	Lipidomic and metabolomic profiles of Coffea canephora L. beans cultivated in Southwestern Nigeria. PLoS ONE, 2021, 16, e0234758.	1.1	7
44	Genome-Wide Characterization of Cucumber (Cucumis sativus L.) GRAS Genes and Their Response to Various Abiotic Stresses. Horticulturae, 2020, 6, 110.	1.2	7
45	Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC Plant Biology, 2021, 21, 479.	1.6	7
46	Editorial: Physiological, Molecular and Genetic Perspectives of Chilling Tolerance in Horticultural Crops. Frontiers in Plant Science, 2020, 11, 602144.	1.7	6
47	Starch Characteristics of Transgenic Wheat (<i>Triticum aestivum</i> L.) Overexpressing the <i>Dx5 High Molecular Weight Glutenin</i> Subunit are Substantially Equivalent to Those in Nonmodified Wheat. Journal of Food Science, 2012, 77, C437-42.	1.5	5
48	Lycopene Accumulation in Pummelo (<i>Citrus Maxima</i> [Burm.] Merr.) Is Influenced by Growing Temperature. International Journal of Fruit Science, 2020, 20, 149-163.	1.2	5
49	Enzymatic Browning in Banana Blossoms and Techniques for Its Reduction. Horticulturae, 2021, 7, 373.	1.2	5
50	The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. Theoretical and Applied Genetics, 2022, 135, 2593-2607.	1.8	5
51	Metabolomics for Salinity Research. , 2012, 913, 203-215.		4
52	Gas Chromatography-Mass Spectrometry and Single Nucleotide Polymorphism-Genotype-By-Sequencing Analyses Reveal the Bean Chemical Profiles and Relatedness of Coffea canephora Genotypes in Nigeria. Plants, 2019, 8, 425.	1.6	3
53	Investigating postharvest chilling injury in tomato (Solanum lycopersicum L.) fruit using magnetic resonance imaging and 5-azacytidine, a hypomethylation agent. Acta Horticulturae, 2020, , 243-252.	0.1	2
54	Genetic Diversity of Saccostrea forskali Rock Oyster in the Gulf of Thailand. Applied Science and Engineering Progress, 2020, 13, .	0.5	1

#	Article	IF	CITATIONS
55	Editorial: Postharvest Ripening, Senescence, and Technology. Frontiers in Genetics, 0, 13, .	1.1	0