
Yoshio Kameda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-cost gate-oxide early-life failure detection in robust systems. , 2010, , .		32
2	Experimental study of gate oxide early-life failures. Reliability Physics Symposium, 2009 IEEE International, 2009, , .	0.0	19
3	Large-Scale SFQ Switches Using Miniaturized 2\$,imes,\$2 Switch Cell. IEEE Transactions on Applied Superconductivity, 2008, 18, 1790-1796.	1.7	0
4	Implementation and Experimental Evaluation of a Cryocooled System Prototype for High-Throughput SFQ Digital Applications. IEEE Transactions on Applied Superconductivity, 2007, 17, 546-551.	1.7	28
5	A New Design Methodology for Single-Flux-Quantum (SFQ) Logic Circuits Using Passive-Transmission-Line (PTL) Wiring. IEEE Transactions on Applied Superconductivity, 2007, 17, 508-511.	1.7	42
6	Automatic Single-Flux-Quantum (SFQ) Logic Synthesis Method for Top-Down Circuit Design. Journal of Physics: Conference Series, 2006, 43, 1179-1182.	0.4	12
7	Method for detailed evaluation of yield of Nb Josephson junctions. Physica C: Superconductivity and Its Applications, 2006, 445-448, 941-945.	1.2	6
8	Investigation of magnetic flux state in Nb SFQ circuits by scanning SQUID microscope. Physica C: Superconductivity and Its Applications, 2006, 445-448, 1034-1036.	1.2	3
9	Single-Flux-Quantum (SFQ) Circuit Design and Test of Crossbar Switch Scheduler. IEEE Transactions on Applied Superconductivity, 2005, 15, 423-426.	1.7	17
10	Progress of Single Flux Quantum Packet Switch Technology. IEEE Transactions on Applied Superconductivity, 2005, 15, 411-414.	1.7	11
11	Design and Investigation of Gate-to-Gate Passive Interconnections for SFQ Logic Circuits. IEEE Transactions on Applied Superconductivity, 2005, 15, 3814-3820.	1.7	16
12	Implementation of a 4 <tex>\$times\$</tex> 4 Switch With Passive Interconnects. IEEE Transactions on Applied Superconductivity, 2005, 15, 356-359.	1.7	20
13	High-Speed Demonstration of Single-Flux-Quantum Cross–Bar Switch up to 50 GHz. IEEE Transactions on Applied Superconductivity, 2005, 15, 6-10.	1.7	13
14	High-speed testing of tandem-Banyan network switch component. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1485-1489.	1.2	4
15	High-Speed Operation of a Single-Flux-Quantum (SFQ) Cross/Bar Switch up to 35 GHz. Japanese Journal of Applied Physics, 2003, 42, 2163-2166.	1.5	6
16	A novel single flux quantum speed conversion buffer for the internal speedup architecture. Physica C: Superconductivity and Its Applications, 2002, 372-376, 127-130.	1.2	4
17	High throughput Tandem-Banyan network switch based on SFQ technology. Superconductor Science and Technology, 2001, 14, 1060-1064.	3.5	5