Hamed Barabadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6392760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-cancer green bionanomaterials: present status and future prospects. Green Chemistry Letters and Reviews, 2017, 10, 285-314.	2.1	166
2	Biomimetic synthesis of silver nanoparticles from <i>Streptomyces atrovirens</i> and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnology, 2017, 11, 965-972.	1.9	123
3	Green synthesis of silver nanoparticles using <scp><i>Alysicarpus monilifer</i></scp> leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. Journal of Interdisciplinary Nanomedicine, 2017, 2, 131-141.	3.6	104
4	Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-Biological Interactions, 2019, 312, 108814.	1.7	98
5	The prevalence and drug resistance pattern of extended spectrum β–lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microbial Pathogenesis, 2018, 114, 180-192.	1.3	91
6	Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communication, 2021, 129, 108647.	1.8	90
7	Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environmental Science and Pollution Research, 2017, 24, 5800-5810.	2.7	87
8	A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing?. Medicina (Lithuania), 2019, 55, 439.	0.8	87
9	Microbial mediated preparation, characterization and optimization of gold nanoparticles. Brazilian Journal of Microbiology, 2014, 45, 1493-1501.	0.8	83
10	Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. International Journal of Surgery, 2015, 19, 128-133.	1.1	83
11	Emerging Selenium Nanoparticles to Combat Cancer: a Systematic Review. Journal of Cluster Science, 2020, 31, 301-309.	1.7	83
12	Phytosynthesis, Characterization and Fungicidal Potential of Emerging Gold Nanoparticles Using PongamiaÂpinnata Leave Extract: A Novel Approach in Nanoparticle Synthesis. Journal of Cluster Science, 2020, 31, 125-131.	1.7	78
13	Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorganic and Nano-Metal Chemistry, 2019, 49, 33-43.	0.9	77
14	Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. JPhys Materials, 2020, 3, 034005.	1.8	76
15	Plant-Mediated Synthesis, Characterization and Bactericidal Potential of Emerging Silver Nanoparticles Using Stem Extract of Phyllanthus pinnatus: A Recent Advance in Phytonanotechnology. Journal of Cluster Science, 2019, 30, 1481-1488.	1.7	72
16	Comparative Anticancer Potential of Biologically and Chemically Synthesized Gold Nanoparticles. Journal of Cluster Science, 2020, 31, 867-876.	1.7	71
17	Penicillium Family as Emerging Nanofactory for Biosynthesis of Green Nanomaterials: A Journey into the World of Microorganisms. Journal of Cluster Science, 2019, 30, 843-856.	1.7	70
18	Emerging Theranostic Biogenic Silver Nanomaterials for Breast Cancer: A Systematic Review. Journal of Cluster Science, 2019, 30, 259-279	1.7	69

Hamed Barabadi

#	Article	IF	CITATIONS
19	Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Talanta, 2022, 243, 123374.	2.9	68
20	Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: Beginning a new era in cancer theragnostic. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00714.	2.1	67
21	Evaluation of Antibacterial and Anticancer Potential of Polyaniline-Bimetal Nanocomposites Synthesized from Chemical Reduction Method. Journal of Cluster Science, 2019, 30, 715-726.	1.7	66
22	Antineoplastic Biogenic Silver Nanomaterials to Combat Cervical Cancer: A Novel Approach in Cancer Therapeutics. Journal of Cluster Science, 2020, 31, 659-672.	1.7	66
23	Nanobiotechnology as an emerging approach to combat malaria: A systematic review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 221-233.	1.7	64
24	Nano-Medicine as a Newly Emerging Approach to Combat Human Immunodeficiency Virus (HIV). Pharmaceutical Nanotechnology, 2018, 6, 17-27.	0.6	63
25	Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and metaâ€analysis. IET Nanobiotechnology, 2018, 12, 377-391.	1.9	62
26	Antimicrobial, Cytotoxicity and Photocatalytic Degradation of Norfloxacin Using Kleinia grandiflora Mediated Silver Nanoparticles. Journal of Cluster Science, 2019, 30, 1415-1424.	1.7	59
27	Emerging Theranostic Silver Nanomaterials to Combat Colorectal Cancer: A Systematic Review. Journal of Cluster Science, 2020, 31, 311-321.	1.7	57
28	Emerging Antineoplastic Plant-Based Gold Nanoparticle Synthesis: A Mechanistic Exploration of their Anticancer Activity Toward Cervical Cancer Cells. Journal of Cluster Science, 2020, 31, 1329-1340.	1.7	57
29	Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review. Journal of Cluster Science, 2020, 31, 1173-1184.	1.7	56
30	Emerging Theranostic Silver and Gold Nanomaterials to Combat Prostate Cancer: A Systematic Review. Journal of Cluster Science, 2019, 30, 1375-1382.	1.7	53
31	Antidiabetic and Antioxidant Activity of Green Synthesized Starch Nanoparticles: An In Vitro Study. Journal of Cluster Science, 2020, 31, 1257-1266.	1.7	53
32	<p>Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 3577-3595.	3.3	52
33	Development and Optimization of Biometal Nanoparticles by Using Mathematical Methodology: A Microbial Approach. Journal of Nano Research, 0, 30, 106-115.	0.8	51
34	Emerging Theranostic Silver Nanomaterials to Combat Lung Cancer: A Systematic Review. Journal of Cluster Science, 2020, 31, 1-10.	1.7	51
35	Fungus-Mediated Synthesis of Gold Nanoparticles: A Novel Biological Approach to Nanoparticle Synthesis. Journal of Nanoscience and Nanotechnology, 2013, 13, 1427-1430.	0.9	46
36	Nanobiotechnology: A promising scope of gold biotechnology. Cellular and Molecular Biology, 2017, 63, 3.	0.3	46

Hamed Barabadi

#	Article	IF	CITATIONS
37	Emerging Theranostic Gold Nanomaterials to Combat Lung Cancer: A Systematic Review. Journal of Cluster Science, 2020, 31, 323-330.	1.7	45
38	Emerging Theranostic Gold Nanomaterials to Combat Colorectal Cancer: A Systematic Review. Journal of Cluster Science, 2020, 31, 651-658.	1.7	44
39	Nanobiotechnology: A promising scope of gold biotechnology. Cellular and Molecular Biology, 2017, 63, 3-4.	0.3	43
40	Green nanotechnology-based tellurium nanoparticles: Exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorganic Chemistry Communication, 2021, 124, 108385.	1.8	40
41	Emerging plant-based anti-cancer green nanomaterials in present scenario. Comprehensive Analytical Chemistry, 2019, 87, 291-318.	0.7	38
42	Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords?. Mutation Research - Reviews in Mutation Research, 2020, 783, 108296.	2.4	36
43	Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects. , 2021, , 439-456.		35
44	TiO2@ZnO nanocomposites decorated with gold nanoparticles: Synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities. Inorganic Chemistry Communication, 2020, 121, 108210.	1.8	32
45	Biosynthesis and Characterization of Biogenic Tellurium Nanoparticles by Using PTCC 5031: A Novel Approach in Gold Biotechnology. Iranian Journal of Pharmaceutical Research, 2018, 17, 87-97.	0.3	30
46	Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 2013, 12, .	0.2	29
47	Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Perspectives. Frontiers in Molecular Biosciences, 2021, 8, 604447.	1.6	28
48	Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. , 2021, , 101-122.		26
49	Penicillium chrysogenum-Derived Silver Nanoparticles: Exploration of Their Antibacterial and Biofilm Inhibitory Activity Against the Standard and Pathogenic Acinetobacter baumannii Compared to Tetracycline. Journal of Cluster Science, 2022, 33, 1929-1942.	1.7	24
50	Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. Iranian Journal of Pharmaceutical Research, 2020, 19, 3-17.	0.3	19
51	Nanotechnology-based approaches for emerging and re-emerging viruses: Special emphasis on COVID-19. Microbial Pathogenesis, 2021, 156, 104908.	1.3	18
52	Biosynthesis of Zinc oxide nanoparticles using Bergenia ciliate aqueous extract and evaluation of their photocatalytic and antioxidant potential. Inorganic Chemistry Communication, 2021, 134, 109020.	1.8	17
53	Fungus-mediated Extracellular Biosynthesis and Characterization of Zirconium Nanoparticles Using Standard Species and Their Preliminary Bactericidal Potential: A Novel Biological Approach to Nanoparticle Synthesis. Iranian Journal of Pharmaceutical Research, 2019, 18, 2101-2110.	0.3	14
54	Biofabrication of gold and silver nanoparticles for pharmaceutical applications. Pharmaceutical and Biomedical Research, 2016, 2, 1-7.	0.3	9

	~
HAMED	KARARADI
	0/110/10/101

#	Article	IF	CITATIONS
55	CTABâ€PLGA Curcumin Nanoparticles: Preparation, Biophysical Characterization and Their Enhanced Antifungal Activity against Phytopathogenic Fungus <i>Pythium ultimum</i> . ChemistrySelect, 2020, 5, 10574-10580.	0.7	7
56	Nanobiosensors for theranostic applications. , 2021, , 511-543.		7
57	Cancer therapeutics with microbial nanotechnology-based approaches. , 2022, , 17-43.		7
58	Barriers for the development, translation, and implementation of nanomedicine: an African perspective. Journal of Interdisciplinary Nanomedicine, 2018, 3, 106-110.	3.6	6
59	Microbial nanotechnology–based approaches for wound healing and infection control. , 2022, , 1-15.		6
60	Biogenic metal nanomaterials to combat antimicrobial resistance. , 2022, , 261-304.		6
61	Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. , 2021, 4, 264-297.		5
62	Emerging Theragnostic Metal-Based Nanomaterials to Combat Cancer. Nanotechnology in the Life Sciences, 2021, , 317-334.	0.4	4
63	Antiviral potential of green-synthesized silver nanoparticles. , 2022, , 285-310.		4
64	Artificial Neural Network Modeling of Fungus-Mediated Extracellular Biosynthesis of Zirconium Nanoparticles Using Standard Penicillium spp Journal of Cluster Science, 2022, 33, 1907-1921.	1.7	3
65	Emerging mesoporous silica nanoparticle-mediated controlled and targeted drug delivery system: Present status and future prospects. , 2021, , 457-481.		0