
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6392111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Framework for probabilistic tsunami hazard assessment considering the effects of sea-level rise due to climate change. Structural Safety, 2022, 94, 102152.	2.8	24
2	Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru. Natural Hazards and Earth System Sciences, 2022, 22, 65-70.	1.5	4
3	A comparative study of the cumulant lattice Boltzmann method in a single-phase free-surface model of violent flows. Computers and Fluids, 2022, 236, 105303.	1.3	9
4	Rapid and quantitative uncertainty estimation of coseismic slip distribution for large interplate earthquakes using real-time GNSS data and its application to tsunami inundation prediction. Earth, Planets and Space, 2022, 74, .	0.9	2
5	PROBABILISTIC TSUNAMI HAZARD ANALYSIS USING RADIAL BASIS FUNCTION NETWORK AND QUASI-MONTE CARLO SIMULATION AND ITS APPLICATION TO RISK ESTIMATION OF DISASTER WASTE CAUSED BY THE ANTICIPATED NANKAI TROUGH EARTHQUAKE. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 2022, 78, 1-16.	0.1	0
6	Framework for estimating the risk and resilience of road networks with bridges and embankments under both seismic and tsunami hazards. Structure and Infrastructure Engineering, 2021, 17, 494-514.	2.0	32
7	Risk estimation of the disaster waste generated by both ground motion and tsunami due to the anticipated Nankai Trough earthquake. Earthquake Engineering and Structural Dynamics, 2021, 50, 2134-2155.	2.5	10
8	The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework. Remote Sensing, 2021, 13, 1401.	1.8	8
9	Learning from multimodal and multitemporal earth observation data for building damage mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 132-143.	4.9	55
10	Enhancement of Detecting Permanent Water and Temporary Water in Flood Disasters by Fusing Sentinel-1 and Sentinel-2 Imagery Using Deep Learning Algorithms: Demonstration of Sen1Floods11 Benchmark Datasets. Remote Sensing, 2021, 13, 2220.	1.8	36
11	Real-time automatic uncertainty estimation of coseismic single rectangular fault model using GNSS data. Earth, Planets and Space, 2021, 73, .	0.9	7
12	Model-based analysis of multi-UAV path planning for surveying postdisaster building damage. Scientific Reports, 2021, 11, 18588.	1.6	27
13	Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8288-8304.	2.7	11
14	Mini Special Issue on Tsunami Numerical Modeling Benchmarks – Challenges of Tsunami Modeling Hackathon –. Journal of Disaster Research, 2021, 16, 977-977.	0.4	0
15	Method to extract difficult-to-evacuate areas by using tsunami evacuation simulation and numerical analysis. International Journal of Disaster Risk Reduction, 2021, 64, 102486.	1.8	5
16	Automatic Collection of Training Samples for Flooded Areas. , 2021, , .		0
17	Validation of the applicability of the particle-based open-source software DualSPHysics to violent flow fields. Coastal Engineering Journal, 2021, 63, 545-572.	0.7	4
18	Tsunami damage estimation in Esmeraldas, Ecuador using fragility functions. AIMS Geosciences, 2021, 7, 669-694.	0.4	0

#	Article	IF	CITATIONS
19	Validation of the MRT-LBM for three-dimensional free-surface flows: an investigation of the weak compressibility in dam-break benchmarks. Coastal Engineering Journal, 2020, 62, 53-68.	0.7	16
20	Combination of school evacuation drill with tsunami inundation simulation: Consensus-making between disaster experts and citizens on an evacuation strategy. International Journal of Disaster Risk Reduction, 2020, 51, 101803.	1.8	16
21	Tsunami hazard assessment for the central and southern pacific coast of Colombia. Coastal Engineering Journal, 2020, 62, 540-552.	0.7	2
22	Learning from the 2018 Western Japan Heavy Rains to Detect Floods during the 2019 Hagibis Typhoon. Remote Sensing, 2020, 12, 2244.	1.8	22
23	Technical Solution Discussion for Key Challenges of Operational Convolutional Neural Network-Based Building-Damage Assessment from Satellite Imagery: Perspective from Benchmark xBD Dataset. Remote Sensing, 2020, 12, 3808.	1.8	10
24	Tsunamis in Latin American countries. Coastal Engineering Journal, 2020, 62, 349-349.	0.7	0
25	Pyramid Pooling Module-Based Semi-Siamese Network: A Benchmark Model for Assessing Building Damage from xBD Satellite Imagery Datasets. Remote Sensing, 2020, 12, 4055.	1.8	28
26	Characteristics of Tsunami Fragility Functions Developed Using Different Sources of Damage Data from the 2018 Sulawesi Earthquake and Tsunami. Pure and Applied Geophysics, 2020, 177, 2437-2455.	0.8	15
27	Wetland Surface Water Detection from Multipath SAR Images Using Gaussian Process-Based Temporal Interpolation. Remote Sensing, 2020, 12, 1756.	1.8	8
28	Tsunami Damage Detection with Remote Sensing: A Review. Geosciences (Switzerland), 2020, 10, 177.	1.0	39
29	Detecting urban changes using phase correlation and â,,"1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sensing of Environment, 2020, 242, 111743.	4.6	29
30	Statistical analysis of earthquake debris extent from wood-frame buildings and its use in road networks in Japan. Earthquake Spectra, 2020, 36, 209-231.	1.6	13
31	A Semiautomatic Pixel-Object Method for Detecting Landslides Using Multitemporal ALOS-2 Intensity Images. Remote Sensing, 2020, 12, 561.	1.8	23
32	A comparative study of empirical and analytical fragility functions for the assessment of tsunami building damage in Tumaco, Colombia. Coastal Engineering Journal, 2020, 62, 362-372.	0.7	6
33	Damage Characterization in Urban Environments from Multitemporal Remote Sensing Datasets Built from Previous Events. , 2020, , .		2
34	Advances of International Collaboration on M9 Disaster Science: Scientific Session Report. Journal of Disaster Research, 2020, 15, 890-899.	0.4	1
35	Drawback in the Change Detection Approach: False Detection during the 2018 Western Japan Floods. Remote Sensing, 2019, 11, 2320.	1.8	18
36	3D gray level co-occurrence matrix and its application to identifying collapsed buildings. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 14-28.	4.9	64

#	Article	IF	CITATIONS
37	Tsunami analytical fragility curves for the Colombian Pacific coast: A reinforced concrete building example. Engineering Structures, 2019, 196, 109309.	2.6	22
38	Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia. Remote Sensing, 2019, 11, 886.	1.8	64
39	Remote Sensing Approach for Mapping and Monitoring Tsunami Debris. , 2019, , .		3
40	Advanced Polarimetric Stereo-Sar for Tsunami Debris Estimation and Disaster Mitigation. , 2019, , .		2
41	Study on the Intensity and Coherence Information of High-Resolution ALOS-2 SAR Images for Rapid Massive Landslide Mapping at a Pixel Level. Remote Sensing, 2019, 11, 2808.	1.8	17
42	Estimating Tsunami Inundation Depth Using Terrasar-X Data. , 2019, , .		2
43	Cross-Domain-Classification of Tsunami Damage Via Data Simulation and Residual-Network-Derived Features From Multi-Source Images. , 2019, , .		1
44	Tsunami. , 2019, , 692-701.		2
45	Performance Evaluation of Tsunami Inundation Simulation on SX-Aurora TSUBASA. Lecture Notes in Computer Science, 2019, , 363-376.	1.0	3
46	Development and Validation of a Tsunami Numerical Model with the Polygonally Nested Grid System and its MPI-Parallelization for Real-Time Tsunami Inundation Forecast on a Regional Scale. Journal of Disaster Research, 2019, 14, 416-434.	0.4	5
47	Special Issue on Disaster and Big Data Part 4. Journal of Disaster Research, 2019, 14, 415-415.	0.4	0
48	A Framework of Rapid Regional Tsunami Damage Recognition From Post-event TerraSAR-X Imagery Using Deep Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 43-47.	1.4	57
49	Tsunami source and inundation features around Sendai Coast, Japan, due to the November 22, 2016 Mw 6.9 Fukushima earthquake. Geoscience Letters, 2018, 5, .	1.3	10
50	Real-time tsunami inundation forecast system for tsunami disaster prevention and mitigation. Journal of Supercomputing, 2018, 74, 3093-3113.	2.4	47
51	An integrated method to extract collapsed buildings from satellite imagery, hazard distribution and fragility curves. International Journal of Disaster Risk Reduction, 2018, 31, 1374-1384.	1.8	17
52	Tsunami Source Inversion Using Tide Gauge and DART Tsunami Waveforms of the 2017 Mw8.2 Mexico Earthquake. Pure and Applied Geophysics, 2018, 175, 35-48.	0.8	11
53	Port-resolving, tsunami, and tidal simulations to locate "tsunami vortexes―for safe vessel evacuation planning. International Journal of Modeling, Simulation, and Scientific Computing, 2018, 09, 1840007.	0.9	0
54	New Insights into Multiclass Damage Classification of Tsunami-Induced Building Damage from SAR Images. Remote Sensing, 2018, 10, 2059.	1.8	24

4

#	Article	IF	CITATIONS
55	Identifying Building Damage Patterns in the 2016 Meinong, Taiwan Earthquake Using Post-Event Dual-Polarimetric ALOS-2/PALSAR-2 Imagery. Journal of Disaster Research, 2018, 13, 291-302.	0.4	2
56	Damage Mapping After the 2017 Puebla Earthquake in Mexico Using High-Resolution Alos2 Palsar2 Data. , 2018, , .		1
57	Towards Operational Satellite-Based Damage-Mapping Using U-Net Convolutional Network: A Case Study of 2011 Tohoku Earthquake-Tsunami. Remote Sensing, 2018, 10, 1626.	1.8	76
58	Detection of Coastal Damage using Differences in Automatically Generated Digital Surface Models (DSMs): Application to the 2011 Off the Pacific Coast of Tohoku Earthquake Tsunami. Journal of Coastal Research, 2018, 85, 696-700.	0.1	2
59	Transportation of Sediment and Heavy Metals Resuspended by a Giant Tsunami Based on Coupled Three-Dimensional Tsunami, Ocean, and Particle-Tracking Simulations. Journal of Water and Environment Technology, 2018, 16, 161-174.	0.3	6
60	Synthetic building damage scenarios using empirical fragility functions: A case study of the 2016 Kumamoto earthquake. International Journal of Disaster Risk Reduction, 2018, 31, 76-84.	1.8	14
61	Analysis of Spatio-Temporal Tsunami Source Models for Reproducing Tsunami Inundation Features. Geosciences (Switzerland), 2018, 8, 3.	1.0	7
62	Novel Unsupervised Classification of Collapsed Buildings Using Satellite Imagery, Hazard Scenarios and Fragility Functions. Remote Sensing, 2018, 10, 296.	1.8	33
63	A Real-Time Tsunami Inundation Forecast System Using Vector Supercomputer SX-ACE. Journal of Disaster Research, 2018, 13, 234-244.	0.4	7
64	Role of Real-Time GNSS in Near-Field Tsunami Forecasting. Journal of Disaster Research, 2018, 13, 453-459.	0.4	13
65	Vulnerability Characteristics of Tsunamis in Indonesia: Analysis of the Global Centre for Disaster Statistics Database. Journal of Disaster Research, 2018, 13, 1039-1048.	0.4	10
66	Special Issue on Disaster and Big Data Part 3. Journal of Disaster Research, 2018, 13, 233-233.	0.4	0
67	Hybrid System for Generating Data on Human Flow in a Tsunami Disaster. Journal of Disaster Research, 2018, 13, 347-357.	0.4	1
68	Dynamic Integrated Model for Disaster Management and Socioeconomic Analysis (DIM2SEA). Journal of Disaster Research, 2018, 13, 1257-1271.	0.4	1
69	Real-time Tsunami Inundation and Damage Forecasting with Super Computers. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2018, 72, 919-922.	0.0	0
70	Towards a damage assessment in a tsunami affected area using L-band and X-band SAR data. , 2017, , .		1
71	Development of a Rainfall Runoff and Flood Inundation Model for Jakarta, Indonesia, and Its Sensitivity Analysis of Datasets to Flood Inundation. , 2017, , .		3

Advances of tsunami inundation forecasting and its future perspectives. , 2017, , .

#	Article	IF	CITATIONS
73	Building Damage Assessment in the 2015 Gorkha, Nepal, Earthquake Using Only Post-Event Dual Polarization Synthetic Aperture Radar Imagery. Earthquake Spectra, 2017, 33, 185-195.	1.6	24
74	Possible Failure Mechanism of Buildings Overturned during the 2011 Great East Japan Tsunami in the Town of Onagawa. Frontiers in Built Environment, 2017, 3, .	1.2	12
75	Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia. Hydrological Research Letters, 2017, 11, 99-105.	0.3	37
76	Verification of a Method for Estimating Building Damage in Extensive Tsunami Affected Areas Using L-Band SAR Data. Journal of Disaster Research, 2017, 12, 251-258.	0.4	12
77	Object-Based Building Damage Assessment Methodology Using Only Post Event ALOS-2/PALSAR-2 Dual Polarimetric SAR Intensity Images. Journal of Disaster Research, 2017, 12, 259-271.	0.4	25
78	Machine Learning Based Building Damage Mapping from the ALOS-2/PALSAR-2 SAR Imagery: Case Study of 2016 Kumamoto Earthquake. Journal of Disaster Research, 2017, 12, 646-655.	0.4	28
79	A STUDY ON APPLICABILITY OF A TSUNAMI INUNDATION MODEL WITH THE POLYGONALLY NESTED GRID SYSTEM AND ITS MPI-PARALLELIZATION TO NATION-WIDE TSUNAMI FORECAST AT MULTIPLE GRID RESOLUTIONS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2017, 73, 1 319-1 324.	0.0	1
80	Special Issue on Disaster and Big Data Part 2. Journal of Disaster Research, 2017, 12, 225-225.	0.4	1
81	Fusion of Real-Time Disaster Simulation and Big Data Assimilation – Recent Progress. Journal of Disaster Research, 2017, 12, 226-232.	0.4	6
82	Text-Data Reduction Method to Grasp the Sequence of a Disaster Situation: Case Study of Web News Analysis of the 2015 Typhoons 17 and 18. Journal of Disaster Research, 2017, 12, 329-334.	0.4	0
83	Integration of Building Unit Based and Zonal Based Approaches to Detect Washed-away Buildings in a Tsunami Affected Area Using TerraSAR-X Data. Journal of Japan Association for Earthquake Engineering, 2016, 16, 3_147-3_156.	0.0	1
84	Disaster debris estimation using high-resolution polarimetric stereo-SAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120, 84-98.	4.9	34
85	A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures. Natural Hazards, 2016, 84, 1257-1285.	1.6	54
86	Understanding the Extreme Tsunami Inundation in Onagawa Town by the 2011 Tohoku Earthquake, Its Effects in Urban Structures and Coastal Facilities. Coastal Engineering Journal, 2016, 58, 1640013-1-1640013-19.	0.7	13
87	IMPROVEMENT OF EFFICIENCY OF WIDE-AREA TSUNAMI SIMULATION THROUGH POLYGONAL REGIONS AND MPI-PARALLELIZATION. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2016, 72, I_373-I_378.	0.0	1
88	Salinization by a tsunami in a semi-enclosed bay: tsunami-ocean three-dimensional simulation based on a great earthquake scenario along the Nankai Trough. Journal of Advanced Simulation in Science and Engineering, 2016, 3, 206-214.	0.1	6
89	EFFECT OF LAND SUBSIDENCE ON FLOOD INUNDATION IN JAKARTA, INDONESIA. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, I_283-I_289.	0.1	7
90	EVALUATION OF FLOOD INUNDATION IN JAKARTA USING FLOOD INUNDATION MODEL CALIBRATED BY RADAR RAINFALL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2016, 72, I_1243-I_1248.	0.0	11

#	Article	IF	CITATIONS
91	A STUDY ON METHODS FOR APPLYING FAULT MODELS RAPIDLY ESTIMATED USING REAL-TIME GNSS TO TSUNAMI SIMULATION. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2016, 72, I_355-I_360.	0.0	3
92	Tsunami-Tide Simulation in a Large Bay Based on the Greatest Earthquake Scenario Along the Nankai Trough. International Journal of Offshore and Polar Engineering, 2016, 26, 392-400.	0.3	7
93	Establishing the Advanced Disaster Reduction Management System by Fusion of Real-Time Disaster Simulation and Big Data Assimilation. Journal of Disaster Research, 2016, 11, 164-174.	0.4	15
94	Grasp of Disaster Situation and Support Need Inside Affected Area with Social Sensing – An Analysis of Twitter Data Before and After the 2011 Great East Japan Earthquake Disaster Occurring –. Journal of Disaster Research, 2016, 11, 198-206.	0.4	12
95	Object-Based Method for Estimating Tsunami-Induced Damage Using TerraSAR-X Data. Journal of Disaster Research, 2016, 11, 225-235.	0.4	17
96	Special Issue on Disaster and Big Data. Journal of Disaster Research, 2016, 11, 163-163.	0.4	1
97	Developing a method for urban damage mapping using radar signatures of building footprint in SAR imagery: A case study after the 2013 Super Typhoon Haiyan. , 2015, , .		2
98	Recent Developments of GPS Tsunami Meter foraFar Offshore Observations. International Association of Geodesy Symposia, 2015, , 145-153.	0.2	8
99	ESTIMATION OF TSUNAMI-INDUCED BUILDING DAMAGE USING L-BAND SYNTHETIC APERTURE RADAR DATA. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1723-I_1728.	0.0	1
100	Classification of Tsunami Fragility Curves Based on Regional Characteristics of Tsunami Damage. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_331-I_336.	0.0	5
101	Developing a building damage function using SAR images and post-event data after the Typhoon Haiyan in The Philippines. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1729-I_1734.	0.0	2
102	Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines. Natural Hazards and Earth System Sciences, 2015, 15, 805-816.	1.5	84
103	Recent Advances in Agent-Based Tsunami Evacuation Simulations: Case Studies in Indonesia, Thailand, Japan and Peru. Pure and Applied Geophysics, 2015, 172, 3409-3424.	0.8	72
104	A Method for Detecting Buildings Destroyed by the 2011 Tohoku Earthquake and Tsunami Using Multitemporal TerraSAR-X Data. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1277-1281.	1.4	36
105	Response to the 2011 Great East Japan Earthquake and Tsunami disaster. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140373.	1.6	55
106	Buildings damage due to the 2013 Haiyan Typhoon inferred from SAR intensity images. , 2015, , .		0
107	Reconstruction Process and Social Issues After the 1746 Earthquake and Tsunami in Peru: Past and Present Challenges After Tsunami Events. Advances in Natural and Technological Hazards Research, 2015, , 97-109.	1.1	5
108	The 1755 Lisbon Tsunami at Vila do Bispo Municipality, Portugal. Journal of Disaster Research, 2015, 10, 1067-1080.	0.4	6

#	Article	IF	CITATIONS
109	Mathematical Modeling for Ship Evacuation from Tsunami Attack. , 2015, , .		0
110	Improving Tsunami Numerical Simulation with the Time-Dependent Building Destruction Model. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_346-I_350.	0.0	5
111	Developing fragility functions for the areas affected by the 2009 Samoa earthquake and tsunami. Natural Hazards and Earth System Sciences, 2014, 14, 3231-3241.	1.5	12
112	The impact of the 2011 Tohoku earthquake tsunami disaster and implications to the reconstruction. Soils and Foundations, 2014, 54, 560-572.	1.3	57
113	Extraction of damaged areas due to the 2013 Haiyan Typhoon using ASTER data. , 2014, , .		8
114	Effects on river macroinvertebrate communities of tsunami propagation after the 2011 Great East Japan Earthquake. Freshwater Biology, 2014, 59, 1474-1483.	1.2	9
115	Damage detection due to the typhoon haiyan from high-resolution SAR images. , 2014, , .		3
116	Detecting building damage caused by the 2011 Tohoku earthquake tsunami using TerraSAR-X data. , 2014, , ,		0
117	Field survey and damage inspection after the 2013 Typhoon Haiyan in The Philippines. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1451-I_1455.	0.0	10
118	An Object-oriented Method to Detect Building Damage using TerraSAR-X Data. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1481-I_1485.	0.0	0
119	Influence of wave shapes to Tsunami Wave Force Acting on a Bridge Superstructure. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_871-I_875.	0.0	2
120	Human loss due to storm surge disaster caused by typhoon Haiyan in the coastal region of Leyte island. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1446-I_1450.	0.0	2
121	Damage and Reconstruction After the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami. Advances in Natural and Technological Hazards Research, 2014, , 321-334.	1.1	2
122	Tsunami Waveform Inversion of the 2007 Peru (<i>M_w</i> 8.1) Earthquake. Journal of Disaster Research, 2014, 9, 954-960.	0.4	10
123	Simulation of Tsunami Inundation in Central Peru from Future Megathrust Earthquake Scenarios. Journal of Disaster Research, 2014, 9, 961-967.	0.4	13
124	Scenarios of Earthquake and Tsunami Damage Probability in Callao Region, Peru Using Tsunami Fragility Functions. Journal of Disaster Research, 2014, 9, 968-975.	0.4	15
125	Evaluation of Tsunami Wave Loads Acting on Walls of Confined-Masonry-Brick and Concrete-Block Houses. Journal of Disaster Research, 2014, 9, 976-983.	0.4	4
126	Development of Building Height Data in Peru from High-Resolution SAR Imagery. Journal of Disaster Research, 2014, 9, 1042-1049.	0.4	11

#	Article	IF	CITATIONS
127	Tsunami-Deck: A New Concept of Tsunami Vertical Evacuation System. Advances in Natural and Technological Hazards Research, 2014, , 335-345.	1.1	0
128	Summary Report of the SATREPS Project on Earthquake and Tsunami Disaster Mitigation Technology in Peru. Journal of Disaster Research, 2014, 9, 916-924.	0.4	1
129	Salinity in Soils and Tsunami Deposits in Areas Affected by the 2010 Chile and 2011 Japan Tsunamis. Pure and Applied Geophysics, 2013, 170, 1047-1066.	0.8	24
130	Lessons Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan. Pure and Applied Geophysics, 2013, 170, 993-1018.	0.8	172
131	Extraction of Tsunami-Flooded Areas and Damaged Buildings in the 2011 Tohoku-Oki Earthquake from TerraSAR-X Intensity Images. Earthquake Spectra, 2013, 29, 183-200.	1.6	59
132	Impacts of the 2011 East Japan tsunami in the Papua region, Indonesia: field observation data and numerical analyses. Geophysical Journal International, 2013, 194, 1625-1639.	1.0	6
133	Introduction of Memorial Paper. Coastal Engineering Journal, 2013, 55, 1303001-1-1303001-1.	0.7	0
134	A REVIEW OF TSUNAMI DAMAGE ASSESSMENT METHODS AND BUILDING PERFORMANCE IN THAILAND. Journal of Earthquake and Tsunami, 2013, 07, 1350036.	0.7	4
135	TSUNAMI HAZARD AND BUILDING DAMAGE ASSESSMENT IN THAILAND USING NUMERICAL MODEL AND FRAGILITY CURVES. Journal of Earthquake and Tsunami, 2013, 07, 1250028.	0.7	2
136	Three Dimensional Mapping of Tsunami Debris with Aerial Photos and LiDAR Data. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2013, 69, I_1436-I_1440.	0.0	4
137	Machine Learning Based Method for Detecting Tsunami Devastated Area Using TerraSAR-X Data. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2013, 69, I_1441-I_1445.	0.0	0
138	Seismic Source of 1746 Callao Earthquake from Tsunami Numerical Modeling. Journal of Disaster Research, 2013, 8, 266-273.	0.4	19
139	Tsunami Inundation Mapping in Lima, for Two Tsunami Source Scenarios. Journal of Disaster Research, 2013, 8, 274-284.	0.4	14
140	An Integrated Simulation of Tsunami Hazard and Human Evacuation in La Punta, Peru. Journal of Disaster Research, 2013, 8, 285-295.	0.4	61
141	Lessons from the 2011 Tohoku Earthquake Tsunami Disaster. Journal of Disaster Research, 2013, 8, 549-560.	0.4	18
142	The 2011 Tohoku Tsunami Flow Velocity Estimation by the Aerial Video Analysis and Numerical Modeling. Journal of Disaster Research, 2013, 8, 561-572.	0.4	48
143	Risk Evaluation of Drifting Ship by Tsunami. Journal of Disaster Research, 2013, 8, 573-583.	0.4	12

144 Evaluations of a Ship Evacuation Maneuver From Tsunami Attack., 2013,,.

0

#	Article	IF	CITATIONS
145	Extraction of damaged buildings due to the 2011 Tohoku, Japan earthquake tsunami. , 2012, , .		5
146	Structural vulnerability in the affected area of the 2011 Tohoku earthquake tsunami, inferred from the post-event aerial photos. , 2012, , .		0
147	TSUNAMI HAZARD AND CASUALTY ESTIMATION IN A COASTAL AREA THAT NEIGHBORS THE INDIAN OCEAN AND SOUTH CHINA SEA. Journal of Earthquake and Tsunami, 2012, 06, 1250010.	0.7	21
148	PROBABILISTIC TSUNAMI HAZARD ANALYSIS AND RISK TO COASTAL POPULATIONS IN THAILAND. Journal of Earthquake and Tsunami, 2012, 06, 1250011.	0.7	17
149	Mapping of Building Damage of the 2011 Tohoku Earthquake Tsunami in Miyagi Prefecture. Coastal Engineering Journal, 2012, 54, 1250006-1-1250006-12.	0.7	82
150	Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami. Coastal Engineering Journal, 2012, 54, 1250001-1-1250001-27.	0.7	337
151	Developing Tsunami Fragility Curves from the Surveyed Data of the 2011 Great East Japan Tsunami in Sendai and Ishinomaki Plains. Coastal Engineering Journal, 2012, 54, 1250008-1-1250008-16.	0.7	91
152	Damage Characteristic and Field Survey of the 2011 Great East Japan Tsunami in Miyagi Prefecture. Coastal Engineering Journal, 2012, 54, 1250005-1-1250005-30.	0.7	111
153	Tsunami flow measurement using the video recorded during the 2011 Tohoku tsunami attack. , 2012, , .		14
154	Quantitative Analysis of Tsunami Debris by Object-Based Image Classification of the Aerial Photo and Satellite Image. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2012, 68, I_371-I_375.	0.0	0
155	Agent-based Simulation of the 2011 Great East Japan Earthquake/Tsunami Evacuation: An Integrated Model of Tsunami Inundation and Evacuation. Journal of Natural Disaster Science, 2012, 34, 41-57.	0.4	134
156	Performance evaluation of pedestrian bridge as vertical evacuation site during the 2011 tsunami in Japan. Journal of Natural Disaster Science, 2012, 34, 79-90.	0.4	9
157	Damage and reconstruction after the 2004 Indian Ocean tsunami and the 2011 Great East Japan tsunami. Journal of Natural Disaster Science, 2012, 34, 19-39.	0.4	46
158	Contribution of earth observation and modelling to disaster response management: Methodological developments and recent examples. , 2012, , .		0
159	Probabilistic Assessment of Structural Performance of Bridges under Tsunami Hazard. , 2012, , .		21
160	Remote Sensing and GIS-based Approach to Identify the Impact of the 2011 Tohoku Earthquake Tsunami Disaster. Journal of Japan Association for Earthquake Engineering, 2012, 12, 6_50-6_62.	0.0	2
161	Tsunamigenic Ratio of the Pacific Ocean earthquakes and a proposal for a Tsunami Index. Natural Hazards and Earth System Sciences, 2012, 12, 175-185.	1.5	26
162	Application of Remote Sensing for Tsunami Disaster. , 2012, , .		14

Application of Remote Sensing for Tsunami Disaster. , 2012, , . 162

#	Article	IF	CITATIONS
163	Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato. Natural Hazards and Earth System Sciences, 2012, 12, 2689-2697.	1.5	80
164	Comparison of decay features of the 2006 and 2007 Kuril Island earthquake tsunamis. Geophysical Journal International, 2012, 190, 347-357.	1.0	7
165	Tsunami Hazard Mitigation at Palabuhanratu, Indonesia. Journal of Disaster Research, 2012, 7, 19-25.	0.4	13
166	Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand. Natural Hazards and Earth System Sciences, 2011, 11, 173-189.	1.5	143
167	Examination of three practical run-up models for assessing tsunami impact on highly populated areas. Natural Hazards and Earth System Sciences, 2011, 11, 3107-3123.	1.5	47
168	Geoinformatics in mangrove monitoring: damage and recovery after the 2004 Indian Ocean tsunami in Phang Nga, Thailand. Natural Hazards and Earth System Sciences, 2011, 11, 1851-1862.	1.5	27
169	Object-based image analysis of post-tsunami high-resolution satellite images for mapping the impact of tsunami disaster. , 2011, , .		5
170	Tsunami records due to the 2010 Chile Earthquake observed by GPS buoys established along the Pacific coast of Japan. Earth, Planets and Space, 2011, 63, e5-e8.	0.9	39
171	Tsunami Attack Evaluation and Countermeasures for Moored Small Ships in a Port. , 2011, , .		0
172	Tsunami fragility inferred from the 1993 Hokkaido Nansei-oki earthquake tsunami disaster. Journal of Japan Association for Earthquake Engineering, 2010, 10, 87-101.	0.0	10
173	Development of Hazard Map in Waterfront Area by Ship Drifting and Grounding Model in Tsunami. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2010, 66, 236-240.	0.0	9
174	Estimation of building damage ratio due to earthquakes and tsunamis using satellite SAR imagery. , 2010, , .		9
175	Tsunami monitoring system using GPS buoy - Present status and outlook , 2010, , .		9
176	Effects of the Rupture Velocity of Fault Motion, Ocean Current and Initial Sea Level on the Transoceanic Propagation of Tsunami. Coastal Engineering Journal, 2010, 52, 107-132.	0.7	35
177	Tsunami damage reduction performance of a mangrove forest in Banda Aceh, Indonesia inferred from field data and a numerical model. Journal of Geophysical Research, 2010, 115, .	3.3	83
178	Searching tsunami affected area by integrating numerical modeling and remote sensing. , 2010, , .		3
179	Developing Fragility Functions for Tsunami Damage Estimation Using Numerical Model and Post-Tsunami Data from Banda Aceh, Indonesia. Coastal Engineering Journal, 2009, 51, 243-273.	0.7	270
180	The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis. Estuarine, Coastal and Shelf Science, 2009, 81, 27-37.	0.9	145

#	Article	IF	CITATIONS
181	Analysis of Large Ship Drifting Motion by Tsunami - A Case Study in Banda Aceh, Indonesia Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2009, 65, 316-320.	0.0	5
182	Numerical Modeling of Free Surface Flow by the Lattice Boltzmann Method. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2009, 65, 56-60.	0.0	1
183	The 1755 Lisbon Tsunami: Tsunami Source Determination and its Validation. Journal of Disaster Research, 2009, 4, 41-52.	0.4	17
184	Tsunami Fragility — A New Measure to Identify Tsunami Damage —. Journal of Disaster Research, 2009, 4, 479-488.	0.4	94
185	Tsunami disaster assessment in the southwestern Pacific countries due to giant earthquakes near Japan. WIT Transactions on the Built Environment, 2009, , .	0.0	Ο
186	Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami. Geophysical Research Letters, 2008, 35, .	1.5	23
187	The Potential Role of Mitigating Effects of Mangrove Forest against The 2004 Indian Ocean Tsunami in Banda Aceh. Proceedings of Coastal Engineering Jsce, 2007, 54, 246-250.	0.1	3
188	The effect of Emperor seamounts on the propagation of the 2006 Kuril Island tsunami. Proceedings of Coastal Engineering Jsce, 2007, 54, 171-175.	0.1	1
189	Estimating the Regional Impact of a Tsunami Using a Numerical Model and the World Population Database. The Quaternary Research, 2007, 46, 499-508.	0.2	4
190	Investigation of Tsunami-Induced Damage and Fragility of Buildings in Thailand after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 377-401.	1.6	57
191	A method for estimating casualties due to the tsunami inundation flow. Natural Hazards, 2006, 39, 265-274.	1.6	44
192	Survey Results of the Indian Ocean Tsunami in the Maldives. Coastal Engineering Journal, 2006, 48, 81-97.	0.7	22
193	Global Disaster: The 2004 Indian Ocean Tsunami. Journal of Disaster Research, 2006, 1, 131-135.	0.4	9
194	Study on Oil Spread Caused by the 1964 Niigata Earthquake Tsunami. Journal of Disaster Research, 2006, 1, 157-168.	0.4	5
195	ISSUES OF RESIDENT'S CONSCIOUSNESS AND EVACUATION FROM THE TSUNAMI. Doboku Gakkai Ronbunshu, 2005, 2005, 789_93-789_104.	0.2	17
196	Dynamic Behavior of Moored Ship Motions induced by Initial Attack of Large Scaled Tsunami. The Journal of Japan Institute of Navigation, 2005, 112, 125-132.	0.0	0
197	Tsunami run-up heights of the 2004 off the Kii peninsula earthquakes. Earth, Planets and Space, 2005, 57, 157-160.	0.9	2
198	Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges. Earth, Planets and Space, 2005, 57, 173-178.	0.9	54

#	Article	IF	CITATIONS
199	Tsunami due to the 2004 September 5th off the Kii peninsula earthquake, Japan, recorded by a new GPS buoy. Earth, Planets and Space, 2005, 57, 297-301.	0.9	66
200	Field Survey of the 2003 Tokachi-Oki Earthquake Tsunami and Simulation at the Ootsu Harbor Located at the Pacific Coast of Hokkaido, Japan. , 2005, , 135-156.		1
201	Tsunami run-up heights of the 2003 Tokachi-oki earthquake. Earth, Planets and Space, 2004, 56, 359-365.	0.9	53
202	MULTIPLE REFLECTION OF TSUNAMIS INCIDENT ON A CONTINENTAL SLOPE. Doboku Gakkai Ronbunshu, 2002, 2002, 151-160.	0.2	0
203	Modeling the 1100 bp paleotsunami in Puget Sound, Washington. Geophysical Research Letters, 2002, 29, 9-1-9-4.	1.5	17
204	Field Survey of the Camana, Peru Tsunami of 23 June 2001. Seismological Research Letters, 2002, 73, 907-920.	0.8	29
205	Title is missing!. Natural Hazards, 2001, 24, 213-229.	1.6	9
206	Vanuatu earthquake and tsunami cause much damage, few casualties. Eos, 2000, 81, 641-647.	0.1	30
207	Propagation of Obliquely Incident Tsunamis on a Slope Part I: Amplification of Tsunamis on a Continental Slope. Coastal Engineering Journal, 1999, 41, 151-164.	0.7	12
208	Propagation of Obliquely Incident Tsunamis on a Slope Part II Characteristics of on-Ridge Tsunamis. Coastal Engineering Journal, 1999, 41, 165-182.	0.7	5
209	Inhibition of HIV-reverse transcriptase activity by asterriquinone and its analogues. Biochemical and Biophysical Research Communications, 1991, 174, 56-62.	1.0	19
210	Inhibition of HIV-reverse transcriptase activity by some phloroglucinol derivatives. FEBS Letters, 1991, 286, 83-85.	1.3	56
211	A comparative analysis of empirical and analytical tsunami fragility functions for buildings in Tumaco, Colombia. IOP Conference Series: Earth and Environmental Science, 0, 630, 012008.	0.2	1
212	Development of calibrated tsunami evacuation models through real-world collected data: The case study of Coquimbo-La Serena, Chile. IOP Conference Series: Earth and Environmental Science, 0, 630, 012005.	0.2	4