Ruirui Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6391953/publications.pdf

Version: 2024-02-01

		76196	74018
81	5,866	40	75
papers	citations	h-index	g-index
83	83	83	9283
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. Journal of Materials Chemistry, 2009, 19, 6274.	6.7	610
2	Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Frontiers in Pharmacology, 2018, 9, 831.	1.6	340
3	Magnetic/Upconversion Fluorescent NaGdF ₄ :Yb,Er Nanoparticle-Based Dual-Modal Molecular Probes for Imaging Tiny Tumors <i>in Vivo</i> . ACS Nano, 2013, 7, 7227-7240.	7.3	336
4	Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS Nano, 2018, 12, 12380-12392.	7.3	292
5	Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood–Brain Barrier. ACS Nano, 2012, 6, 3304-3310.	7.3	272
6	Lateral Flow Immunochromatographic Assay for Sensitive Pesticide Detection by Using Fe ₃ O ₄ Nanoparticle Aggregates as Color Reagents. Analytical Chemistry, 2011, 83, 6778-6784.	3.2	216
7	NaGdF ₄ Nanoparticle-Based Molecular Probes for Magnetic Resonance Imaging of Intraperitoneal Tumor Xenografts <i>in Vivo</i> . ACS Nano, 2013, 7, 330-338.	7.3	207
8	Anchoring Group Effects of Surface Ligands on Magnetic Properties of Fe ₃ O ₄ Nanoparticles: Towards High Performance MRI Contrast Agents. Advanced Materials, 2014, 26, 2694-2698.	11.1	194
9	Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials, 2017, 127, 25-35.	5.7	169
10	Microfluidic Mass Production of Stabilized and Stealthy Liquid Metal Nanoparticles. Small, 2018, 14, e1800118.	5.2	117
11	Superdispersible PVP-Coated Fe ₃ O ₄ Nanocrystals Prepared by a "One-Pot― Reaction. Journal of Physical Chemistry B, 2008, 112, 14390-14394.	1.2	115
12	Phase Separation in Liquid Metal Nanoparticles. Matter, 2019, 1, 192-204.	5.0	110
13	Highly Fluorescent CdTe@SiO ₂ Particles Prepared via Reverse Microemulsion Method. Chemistry of Materials, 2010, 22, 420-427.	3.2	107
14	Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release, 2020, 322, 566-592.	4.8	107
15	Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosensors and Bioelectronics, 2009, 24, 3657-3662.	5.3	99
16	Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chemical Communications, 2011, 47, 9293.	2.2	99
17	Polyaniline/Fe ₃ O ₄ Nanoparticle Composite: Synthesis and Reaction Mechanism. Journal of Physical Chemistry B, 2009, 113, 5052-5058.	1.2	98
18	Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene- <i>alt</i> -maleic anhydride) in aqueous solutions. Nanoscale, 2018, 10, 19871-19878.	2.8	98

#	Article	IF	Citations
19	Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese Chemical Letters, 2020, 31, 617-625.	4.8	94
20	Molecular Imaging of Vulnerable Atherosclerotic Plaques <i>in Vivo</i> with Osteopontin-Specific Upconversion Nanoprobes. ACS Nano, 2017, 11, 1816-1825.	7.3	91
21	Ultrasensitive <i>in Vivo</i> Detection of Primary Gastric Tumor and Lymphatic Metastasis Using Upconversion Nanoparticles. ACS Nano, 2015, 9, 2120-2129.	7.3	90
22	A Novel Type of Dual-Modality Molecular Probe for MR and Nuclear Imaging of Tumor: Preparation, Characterization and in Vivo Application. Molecular Pharmaceutics, 2009, 6, 1074-1082.	2.3	79
23	Functional Liquid Metal Nanoparticles Produced by Liquidâ€Based Nebulization. Advanced Materials Technologies, 2019, 4, 1800420.	3.0	78
24	MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe 3 O 4 nanoparticles. Biomaterials, 2017, 112, 336-345.	5.7	71
25	Soybean Lecithinâ€Mediated Nanoporous PLGA Microspheres with Highly Entrapped and Controlled Released BMPâ€⊋ as a Stem Cell Platform. Small, 2018, 14, e1800063.	5.2	71
26	Rapid and sensitive detection of microcystin by immunosensor based on nuclear magnetic resonance. Biosensors and Bioelectronics, 2009, 25, 240-243.	5.3	70
27	Aqueous synthesis of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors. Nanoscale, 2015, 7, 11075-11081.	2.8	68
28	Gelification: An Effective Measure for Achieving Differently Sized Biocompatible Fe ₃ O ₄ Nanocrystals through a Single Preparation Recipe. Journal of the American Chemical Society, 2011, 133, 19512-19523.	6.6	66
29	Investigations on the Interactions between Plasma Proteins and Magnetic Iron Oxide Nanoparticles with Different Surface Modifications. Journal of Physical Chemistry C, 2010, 114, 21270-21276.	1.5	64
30	Recent Advances of Electrospun Nanofibrous Membranes in the Development of Chemosensors for Heavy Metal Detection. Small, 2017, 13, 1604293.	5.2	63
31	Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen. Journal of Bioscience and Bioengineering, 2019, 128, 234-240.	1.1	59
32	Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors, 2020, 10, 196.	2.3	59
33	Aqueous Manganese-Doped Core/Shell CdTe/ZnS Quantum Dots with Strong Fluorescence and High Relaxivity. Journal of Physical Chemistry C, 2013, 117, 18752-18761.	1.5	58
34	Effects of Quantum Dots in Polymerase Chain Reaction. Journal of Physical Chemistry B, 2009, 113, 7637-7641.	1.2	57
35	In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale, 2014, 6, 14343-14353.	2.8	54
36	Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 121-142.	2.3	51

#	Article	IF	CITATIONS
37	In situ111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. Chemical Communications, 2014, 50, 2170.	2,2	50
38	Ultrasensitive immunoassay of 7-aminoclonazepam in human urine based on CdTe nanoparticle bioconjugations by fabricated microfluidic chip. Biosensors and Bioelectronics, 2009, 24, 2051-2056.	5 . 3	45
39	Polymorphism and stability of nanostructures of three types of collagens from bovine flexor tendon, rat tail, and tilapia skin. Food Hydrocolloids, 2019, 93, 253-260.	5 . 6	43
40	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	5.6	43
41	Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules, 2021, 22, 330-339.	2.6	43
42	Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials, 2011, 32, 1923-1931.	5.7	40
43	Dynamic Temperature Control System for the Optimized Production of Liquid Metal Nanoparticles. ACS Applied Nano Materials, 2020, 3, 6905-6914.	2.4	38
44	Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. Nanoscale, 2020, 12, 8040-8064.	2.8	38
45	Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes. Nanoscale, 2016, 8, 12579-12587.	2.8	36
46	Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an <i>in vitro</i> blood brain barrier model. Biomaterials Science, 2018, 6, 314-323.	2.6	36
47	Strategies to overcome the barrier: use of nanoparticles as carriers and modulators of barrier properties. Cell and Tissue Research, 2014, 355, 717-726.	1.5	35
48	Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules, 2019, 20, 4243-4257.	2.6	35
49	Liquid Metal Particles and Polymers: A Soft–Soft System with Exciting Properties. Accounts of Materials Research, 2021, 2, 966-978.	5. 9	34
50	Bioconjugation and Fluorescence Labeling of Iron Oxide Nanoparticles Grafted with Bromomaleimide-Terminal Polymers. Biomacromolecules, 2018, 19, 4423-4429.	2.6	32
51	Electrospun Nanobelt-Shaped Polymer Membranes for Fast and High-Sensitivity Detection of Metal lons. ACS Applied Materials & Amp; Interfaces, 2019, 11, 5401-5413.	4.0	31
52	Proteins Conjugated with Sulfoxide-Containing Polymers Show Reduced Macrophage Cellular Uptake and Improved Pharmacokinetics. ACS Macro Letters, 2020, 9, 799-805.	2.3	30
53	Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Advanced Drug Delivery Reviews, 2021, 179, 114005.	6.6	30
54	Automated and ultrasensitive detection of methyl-3-quinoxaline-2-carboxylic acid by using gold nanoparticles probes SIA-rt-PCR. Biosensors and Bioelectronics, 2009, 24, 2858-2863.	5. 3	29

#	Article	IF	CITATIONS
55	Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Australian Journal of Chemistry, 2017, 70, 1161.	0.5	27
56	Electrospraying Technique and Its Recent Application Advances for Biological Macromolecule Encapsulation of Food Bioactive Substances. Food Reviews International, 2022, 38, 566-588.	4.3	26
57	Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chemistry of Materials, 2021, 33, 6484-6500.	3.2	25
58	Engineering Polymers via Understanding the Effect of Anchoring Groups for Highly Stable Liquid Metal Nanoparticles. ACS Applied Nano Materials, 2022, 5, 5959-5971.	2.4	24
59	Zero valent iron core–iron oxide shell nanoparticles as small magnetic particle imaging tracers. Chemical Communications, 2020, 56, 3504-3507.	2.2	22
60	Magnetic tweezers for the mechanical research of DNA at the single molecule level. Analytical Methods, 2017, 9, 5720-5730.	1.3	20
61	Engineering Metal–Organic Frameworks (MOFs) for Controlled Delivery of Physiological Gaseous Transmitters. Nanomaterials, 2020, 10, 1134.	1.9	20
62	A novel clustered SPIO nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy. Nano Research, 2020, 13, 2216-2225.	5.8	20
63	Ultrasmall PEGylated MnxFe3â^'xO4 (x = 0â€"0.34) nanoparticles: effects of Mn(ii) doping on T1- and T2-weighted magnetic resonance imaging. RSC Advances, 2013, 3, 23454.	1.7	19
64	Surface-biofunctionalized multicore/shell CdTe@SiO ₂ composite particles for immunofluorescence assay. Nanotechnology, 2011, 22, 505104.	1.3	18
65	Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis—A Review. Biosensors, 2020, 10, 165.	2.3	17
66	Monodispersed Magnetic Polystyrene Beads with Excellent Colloidal Stability and Strong Magnetic Response. Macromolecular Rapid Communications, 2010, 31, 1805-1810.	2.0	16
67	Multimodal Nanoprobe for Pancreatic Beta Cell Detection and Amyloidosis Mitigation. Chemistry of Materials, 2020, 32, 1080-1088.	3.2	16
68	Photoâ€Degradable Micelles Capable of Releasing of Carbon Monoxide under Visible Light Irradiation. Macromolecular Rapid Communications, 2020, 41, e2000323.	2.0	13
69	Recent Advances in Magnetic Nanoparticle-based Molecular Probes for Hepatocellular Carcinoma Diagnosis and Therapy. Current Pharmaceutical Design, 2018, 24, 2432-2437.	0.9	13
70	Recent Advances in Single Fe-Based Nanoagents for Photothermal–Chemodynamic Cancer Therapy. Biosensors, 2022, 12, 86.	2.3	13
71	Instrumental Analytical Techniques for the Characterization of Crystals in Pharmaceutics and Foods. Crystal Growth and Design, 2017, 17, 6138-6148.	1.4	11
72	Electrospun Nanofibrous Cellulose Acetate/Curcumin Membranes for Fast Detection of Pb Ions. Journal of Nanoscience and Nanotechnology, 2019, 19, 670-674.	0.9	10

#	Article	IF	Citations
73	Magnetically-stimulated transformations in nanostructure of lipid mesophases: Effect of structure of iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110965.	2.5	8
74	Magnetic Iron Oxide Nanoparticles and Their Applications in Magnetic Resonance Imaging. Sheng Wu Wu Li Hsueh Bao, 2011, 27, 272-288.	0.1	7
75	Keeping up with the COVID'sâ€"Could siRNAâ€based antivirals be a part of the answer?. Exploration, 2022, 2, .	5.4	7
76	Imaging Tumor Metastases with Molecular Probes. Current Pharmaceutical Design, 2015, 21, 6260-6264.	0.9	6
77	One-pot synthesis of PVP-coated Ni0.6Fe2.4O4 nanocrystals. Science Bulletin, 2010, 55, 3472-3478.	1.7	5
78	Functionalization of NaGdF ₄ nanoparticles with a dibromomaleimide-terminated polymer for MR/optical imaging of thrombosis. Polymer Chemistry, 2020, 11, 1010-1017.	1.9	4
79	Multifunctional vectors system for cancer therapy using single-walled carbon nanotubes and antisense oligonucleotide-modified gold nanoparticles composite materials. International Journal of Nanotechnology, 2011, 8, 664.	0.1	1
80	Tumor-penetrating peptides., 2018,, 371-386.		1
81	Multifunctional vectors system for cancer therapy using single-walled carbon nanotubes and antisense oligonucleotide-modified gold nanoparticles composite materials. , 2010, , .		O