Luiz F S Magnago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639155/publications.pdf

Version: 2024-02-01

516681 414395 1,372 33 16 32 citations g-index h-index papers 33 33 33 2310 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human impacts as the main driver of tropical forest carbon. Science Advances, 2022, 8, .	10.3	18
2	Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions. Landscape Ecology, 2021, 36, 439-453.	4.2	11
3	Nearby mature forest distance and regenerating forest age influence tree species composition in the Atlantic forest of Southern Bahia, Brazil. Biodiversity and Conservation, 2021, 30, 2165-2180.	2.6	2
4	Secondary forest fragments offer important carbon and biodiversity cobenefits. Global Change Biology, 2020, 26, 509-522.	9.5	88
5	Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biological Conservation, 2020, 241, 108368.	4.1	93
6	Soil and climate equally contribute to changes in the species compositions of Brazilian dry forests across 300 km. Journal of Plant Ecology, 2020, 13, 171-176.	2.3	2
7	Assessing fish sampling effort in studies of Brazilian streams. Scientometrics, 2020, 123, 841-860.	3.0	13
8	Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna. Biodiversity and Conservation, 2020, 29, 3151-3168.	2.6	32
9	A largeâ€scale assessment of plant dispersal mode and seed traits across humanâ€modified Amazonian forests. Journal of Ecology, 2020, 108, 1373-1385.	4.0	20
10	Land use history drives differences in functional composition and losses in functional diversity and stability of Neotropical urban forests. Urban Forestry and Urban Greening, 2020, 49, 126608.	5.3	11
11	Resilience of lowland Atlantic forests in a highly fragmented landscape: Insights on the temporal scale of landscape restoration. Forest Ecology and Management, 2020, 470-471, 118183.	3.2	11
12	Ecological restoration increases conservation of taxonomic and functional beta diversity of woody plants in a tropical fragmented landscape. Forest Ecology and Management, 2019, 451, 117538.	3.2	15
13	Atlantic Forest topsoil nutrients can be resistant to disturbance and forest clearing. Biotropica, 2019, 51, 342-354.	1.6	11
14	Loss of biodiversity and shifts in aboveground biomass drivers in tropical rainforests with different disturbance histories. Biodiversity and Conservation, 2018, 27, 3215-3231.	2.6	31
15	Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil. Journal of Plant Ecology, 2018, 11, 803-814.	2.3	41
16	Relación especie-área y distribución de la abundancia de especies en una comunidad vegetal de un inselberg tropical: efecto del tamaño de los parches. Revista De Biologia Tropical, 2018, 66, 937.	0.4	9
17	Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good†uring theory. Ecology, 2017, 98, 2914-2929.	3.2	17
18	Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. Journal of Ecology, 2017, 105, 265-276.	4.0	57

#	Article	IF	CITATIONS
19	Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests?. Functional Ecology, 2017, 31, 542-552.	3.6	57
20	Functional antagonism between nitrogen-fixing leguminous trees and calcicole-drought-tolerant trees in the Cerrado. Acta Botanica Brasilica, 2017, 31, 11-18.	0.8	10
21	The hypothesis of sympatric speciation as the dominant generator of endemism in a global hotspot of biodiversity. Ecology and Evolution, 2015, 5, 5272-5283.	1.9	9
22	Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under <scp>REDD</scp> +?. Global Change Biology, 2015, 21, 3455-3468.	9.5	71
23	Defaunation affects carbon storage in tropical forests. Science Advances, 2015, 1, e1501105.	10.3	285
24	Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodiversity and Conservation, 2015, 24, 2305-2318.	2.6	117
25	How much do we know about the endangered Atlantic Forest? Reviewing nearly 70Âyears of information on tree community surveys. Biodiversity and Conservation, 2015, 24, 2135-2148.	2.6	85
26	Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of Ecology, 2014, 102, 475-485.	4.0	136
27	Structure and diversity of restingas along a flood gradient in southeastern Brazil. Acta Botanica Brasilica, 2013, 27, 801-809.	0.8	18
28	Riqueza e estrutura do componente arb \tilde{A}^3 reo e caracter \tilde{A} sticas ed \tilde{A}_i ficas de um gradiente de floresta ciliar em Minas Gerais, Brasil. Revista Arvore, 2013, 37, 1011-1023.	0.5	3
29	Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils. Anais Da Academia Brasileira De Ciencias, 2012, 84, 807-822.	0.8	27
30	Heterogeneidade florÃstica das fitocenoses de restingas nos estados do Rio de Janeiro e EspÃrito Santo, Brasil. Revista Arvore, 2011, 35, 245-254.	0.5	26
31	Variações estruturais e caracterÃsticas edáficas em diferentes estádios sucessionais de floresta ciliar de Tabuleiro, ES. Revista Arvore, 2011, 35, 445-456.	0.5	5
32	Gradiente fitofisionômico-edáfico em formações florestais de Restinga no sudeste do Brasil. Acta Botanica Brasilica, 2010, 24, 734-746.	0.8	28
33	Soil and altitude drive diversity and functioning of Brazilian <i>Páramos</i> (campo de altitude). Journal of Plant Ecology, 0, , rtw088.	2.3	13