
Alexa Patzelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6391454/publications.pdf Version: 2024-02-01

Διεγλ Ρλτγειτ

#	Article	IF	CITATIONS
1	Selective follicular targeting by modification of the particle sizes. Journal of Controlled Release, 2011, 150, 45-48.	9.9	260
2	Drug delivery to hair follicles. Expert Opinion on Drug Delivery, 2013, 10, 787-797.	5.0	123
3	Differential stripping demonstrates a significant reduction of the hair follicle reservoir in vitro compared to in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 234-238.	4.3	93
4	Combined antibacterial effects of tissueâ€ŧolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. Journal of Biophotonics, 2015, 8, 382-391.	2.3	68
5	Recent advances in follicular drug delivery of nanoparticles. Expert Opinion on Drug Delivery, 2020, 17, 49-60.	5.0	64
6	Do nanoparticles have a future in dermal drug delivery?. Journal of Controlled Release, 2017, 246, 174-182.	9.9	61
7	<i>In vivo</i> study for the discrimination of cancerous and normal skin using fibre probeâ€based Raman spectroscopy. Experimental Dermatology, 2015, 24, 767-772.	2.9	56
8	Ratchet effect for nanoparticle transport in hair follicles. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 125-130.	4.3	50
9	pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. Journal of Controlled Release, 2019, 295, 214-222.	9.9	49
10	Comparative study of hair follicle morphology in eight mammalian species and humans. Skin Research and Technology, 2014, 20, 147-154.	1.6	47
11	Hair follicles, their disorders and their opportunities. Drug Discovery Today Disease Mechanisms, 2008, 5, e173-e181.	0.8	44
12	Triggering of drug release of particles in hair follicles. Journal of Controlled Release, 2012, 160, 509-514.	9.9	39
13	Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 301-306.	4.3	39
14	Influence of the Vehicle on the Penetration of Particles into Hair Follicles. Pharmaceutics, 2011, 3, 307-314.	4.5	24
15	Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 102-110.	4.3	24
16	Microneedle-Facilitated Intradermal Proretinal Nanoparticle Delivery. Nanomaterials, 2020, 10, 368.	4.1	19
17	Comparison of the skin penetration of Garcinia mangostana extract in particulate and non-particulate form. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 307-313.	4.3	18
18	From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development. Advances in Experimental Medicine and Biology, 2017, 996, 311-318.	1.6	18

ALEXA PATZELT

#	Article	IF	CITATIONS
19	Barrier-disrupted skin: Quantitative analysis of tape and cyanoacrylate stripping efficiency by multiphoton tomography. International Journal of Pharmaceutics, 2020, 574, 118843.	5.2	15
20	Investigation of transfollicular caffeine penetration using microdialysis on ex vivo porcine ear skin. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 1-8.	4.3	15
21	Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 12-16.	4.3	14
22	Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 93-100.	4.3	14
23	Penetration of topically applied nanocarriers into the hair follicles of dog and rat dorsal skin and porcine ear skin. Veterinary Dermatology, 2016, 27, 256.	1.2	13
24	Temperature-Enhanced Follicular Penetration of Thermoresponsive Nanogels. Zeitschrift Fur Physikalische Chemie, 2018, 232, 805-817.	2.8	10
25	Release of the model drug SR101 from polyurethane nanocapsules in porcine hair follicles triggered by LED-derived low dose UVA light. International Journal of Pharmaceutics, 2021, 597, 120339.	5.2	9
26	The impact of skin massage frequency on the intrafollicular transport of silica nanoparticles: Validation of the ratchet effect on an ex vivo porcine skin model. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 266-272.	4.3	9
27	Detection of capecitabine (Xeloda [®]) on the skin surface after oral administration. Journal of Biomedical Optics, 2016, 21, 047002.	2.6	8
28	A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 14938-14944.	13.8	7
29	Determination of the pH Gradient in Hair Follicles of Human Volunteers Using pH-Sensitive Melamine Formaldehyde-Pyranine Nile Blue Microparticles. Sensors, 2020, 20, 5243.	3.8	5
30	Influence of Storage and Preservation Techniques on Egg-Derived Carotenoids: A Substantial Source for Cutaneous Antioxidants. Skin Pharmacology and Physiology, 2019, 32, 65-71.	2.5	4
31	Solvent-Containing Closure Material Can Be Used to Prevent Follicular Penetration of Caffeine and Fluorescein Sodium Salt on Porcine Ear Skin. Skin Pharmacology and Physiology, 2020, 33, 117-126.	2.5	4
32	Microdialysis on Ex Vivo Porcine Ear Skin Can Validly Study Dermal Penetration including the Fraction of Transfollicular Penetration—Demonstrated on Caffeine Nanocrystals. Nanomaterials, 2021, 11, 2387.	4.1	4
33	Laser scanning microscopy for control of skin decontamination efficacy from airborne particulates using highly absorbent textile nanofiber material in combination with PEGâ€12 dimethicone. Skin Research and Technology, 2020, 26, 558-563.	1.6	3
34	Analysis of the morphometric parameters of pig ear hair follicles. Skin Research and Technology, 2021, 27, 730-738.	1.6	3
35	Application of parelectric spectroscopy to detect skin cancer—A pilot study. Skin Research and Technology, 2020, 26, 234-240.	1.6	2
36	Solvent Effects on Skin Penetration and Spatial Distribution of the Hydrophilic Nitroxide Spin Probe PCA Investigated by EPR. Cell Biochemistry and Biophysics, 2020, 78, 127-137.	1.8	2

ALEXA PATZELT

#	Article	IF	CITATIONS
37	A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angewandte Chemie, 2021, 133, 15065-15071.	2.0	2
38	Skin care. Sun care. A successful symbiosis?. JDDG - Journal of the German Society of Dermatology, 2013, 11, 1020-1021.	0.8	0
39	Formulation of drug-loaded oligodepsipeptide particles with submicron size. Clinical Hemorheology and Microcirculation, 2021, 77, 201-219.	1.7	Ο