Da Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6391444/publications.pdf Version: 2024-02-01

ΠΑ ΟΠΧΑΝΟ

#	Article	IF	CITATIONS
1	Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures. Chemical Engineering Journal, 2019, 370, 614-624.	12.7	373
2	Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal. Environmental Pollution, 2017, 223, 153-160.	7.5	231
3	Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere, 2017, 184, 609-617.	8.2	217
4	Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere, 2019, 215, 739-745.	8.2	143
5	Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption andAcrystallization. Chemosphere, 2019, 221, 683-692.	8.2	126
6	Mechanistic insights into adsorptive and oxidative removal of monochlorobenzene in biochar-supported nanoscale zero-valent iron/persulfate system. Chemical Engineering Journal, 2020, 400, 125811.	12.7	109
7	Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 2019, 533, 428-436.	9.4	107
8	Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. Journal of Hazardous Materials, 2017, 338, 372-380.	12.4	83
9	Heterogeneously catalyzed persulfate by CuMgFe layered double oxide for the degradation of phenol. Applied Catalysis A: General, 2017, 538, 19-26.	4.3	66
10	Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar. Scientific Reports, 2017, 7, 43051.	3.3	57
11	Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Science of the Total Environment, 2020, 698, 134215.	8.0	53
12	Enhanced removal of 1,2,4-trichlorobenzene by modified biochar supported nanoscale zero-valent iron and palladium. Chemosphere, 2020, 249, 126518.	8.2	46
13	Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr(VI) removal. Chemosphere, 2021, 267, 129183.	8.2	35
14	Synergistic roles of Fe(II) on simultaneous removal of hexavalent chromium and trichloroethylene by attapulgite-supported nanoscale zero-valent iron/persulfate system. Chemical Engineering Journal, 2022, 430, 132841.	12.7	23
15	Degradation of benzene derivatives in the CuMgFe-LDO/persulfate system: The role of the interaction between the catalyst and target pollutants. Journal of Environmental Sciences, 2020, 90, 87-97.	6.1	21
16	Degradation of 1,4-dioxane by biochar activating peroxymonosulfate under continuous flow conditions. Science of the Total Environment, 2022, 809, 151929.	8.0	10