Michael A Kalwat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6391100/publications.pdf Version: 2024-02-01

MICHAEL A KALWAT

#	Article	IF	CITATIONS
1	Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet Î ² cells. Experimental and Molecular Medicine, 2013, 45, e37-e37.	7.7	119
2	Mechanisms of the amplifying pathway of insulin secretion in the \hat{I}^2 cell. , 2017, 179, 17-30.		106
3	Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. Journal of Cell Biology, 2011, 193, 185-199.	5.2	64
4	Munc18-1 Regulates First-phase Insulin Release by Promoting Granule Docking to Multiple Syntaxin Isoforms. Journal of Biological Chemistry, 2012, 287, 25821-25833.	3.4	64
5	A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic l² cells. Biochemical Pharmacology, 2013, 85, 808-816.	4.4	61
6	Stimulus-induced S-Nitrosylation of Syntaxin 4 Impacts Insulin Granule Exocytosis. Journal of Biological Chemistry, 2011, 286, 16344-16354.	3.4	48
7	Gelsolin Associates with the N Terminus of Syntaxin 4 to Regulate Insulin Granule Exocytosis. Molecular Endocrinology, 2012, 26, 128-141.	3.7	40
8	Insulin Promoter-Driven <i>Gaussia</i> Luciferase-Based Insulin Secretion Biosensor Assay for Discovery of β-Cell Glucose-Sensing Pathways. ACS Sensors, 2016, 1, 1208-1212.	7.8	39
9	Doc2b Is a Key Effector of Insulin Secretion and Skeletal Muscle Insulin Sensitivity. Diabetes, 2012, 61, 2424-2432.	0.6	38
10	Cool-1/βPIX functions as a guanine nucleotide exchange factor in the cycling of Cdc42 to regulate insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1072-E1080.	3.5	37
11	Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in β-Cells. ACS Chemical Biology, 2016, 11, 1128-1136.	3.4	36
12	Pancreatitis is an FGF21-deficient state that is corrected by replacement therapy. Science Translational Medicine, 2020, 12, .	12.4	29
13	The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology, 2021, 162,	2.8	18
14	Sucralose activates an ERK1/2–ribosomal protein S6 signaling axis. FEBS Open Bio, 2017, 7, 174-186.	2.3	15
15	Chromomycin A2 potently inhibits glucose-stimulated insulin secretion from pancreatic Î ² cells. Journal of General Physiology, 2018, 150, 1747-1757.	1.9	9
16	High-Throughput Screening for Insulin Secretion Modulators. Methods in Molecular Biology, 2021, 2233, 131-138.	0.9	6
17	Measuring Relative Insulin Secretion using a Co-Secreted Luciferase Surrogate. Journal of Visualized Experiments, 2019, , .	0.3	4
18	α2-Adrenergic Disruption of β Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 576396.	3.7	4

#	Article	IF	CITATIONS
19	Small Molecule-mediated Insulin Hypersecretion Induces Transient ER Stress Response and Loss of Beta Cell Function. Endocrinology, 2022, 163, .	2.8	2
20	Correction to Insulin Promoter-Driven <i>Gaussia</i> Luciferase-Based Insulin Secretion Biosensor Assay for Discovery of Î ² -Cell Glucose-Sensing Pathways. ACS Sensors, 2017, 2, 316-316.	7.8	1