Buom-Yong Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390996/publications.pdf

Version: 2024-02-01

56 papers 2,327 citations

304368
22
h-index

205818 48 g-index

57 all docs

57 docs citations

57 times ranked

2021 citing authors

#	Article	IF	CITATIONS
1	Maintenance of Mouse Male Germ Line Stem Cells In Vitro1. Biology of Reproduction, 2003, 68, 2207-2214.	1.2	271
2	Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14302-14307.	3.3	252
3	Effects of Aging and Niche Microenvironment on Spermatogonial Stem Cell Self-Renewal. Stem Cells, 2006, 24, 1505-1511.	1.4	235
4	Phenotypic and functional characteristics of spermatogonial stem cells in rats. Developmental Biology, 2004, 274, 158-170.	0.9	145
5	Restoration of Fertility by Germ Cell Transplantation Requires Effective Recipient Preparation 1. Biology of Reproduction, 2003, 69, 412-420.	1.2	144
6	Bisphenol-A Affects Male Fertility via Fertility-related Proteins in Spermatozoa. Scientific Reports, 2015, 5, 9169.	1.6	136
7	Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice. Environmental Health Perspectives, 2017, 125, 238-245.	2.8	106
8	Stem cell and niche development in the postnatal rat testis. Developmental Biology, 2003, 263, 253-263.	0.9	94
9	Testicular endothelial cells are a critical population in the germline stem cell niche. Nature Communications, 2018, 9, 4379.	5.8	85
10	Efficient Generation of Transgenic Rats Through the Male Germline Using Lentiviral Transduction and Transplantation of Spermatogonial Stem Cells. Journal of Andrology, 2006, 28, 353-360.	2.0	84
11	Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11706-11711.	3.3	83
12	Lentiviral vector transduction of male germ line stem cells in mice. FEBS Letters, 2002, 524, 111-115.	1.3	73
13	Cryopreservation in Trehalose Preserves Functional Capacity of Murine Spermatogonial Stem Cells. PLoS ONE, 2013, 8, e54889.	1.1	56
14	Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells. PLoS ONE, 2016, 11, e0161372.	1.1	53
15	Cryopreservation of Mouse Spermatogonial Stem Cells in Dimethylsulfoxide and Polyethylene Glycol 1. Biology of Reproduction, 2013, 89, 109.	1.2	39
16	A novel approach to assessing bisphenol-A hazards using an in vitro model system. BMC Genomics, 2016, 17, 577.	1.2	39
17	Enrichment of Testicular Gonocytes and Genetic Modification Using Lentiviral Transduction in Pigs1. Biology of Reproduction, 2010, 82, 1162-1169.	1.2	35
18	Cryopreservation of porcine spermatogonial stem cells by slow-freezing testis tissue in trehalose1. Journal of Animal Science, 2014, 92, 984-995.	0.2	35

#	Article	lF	CITATIONS
19	Xenoestrogenic compounds promote capacitation and an acrosome reaction in porcine sperm. Theriogenology, 2011, 75, 1161-1169.	0.9	34
20	Effect of sugar molecules on the cryopreservation of mouse spermatogonial stem cells. Fertility and Sterility, 2014, 101, 1165-1175.e5.	0.5	31
21	Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology, 2015, 70, 175-183.	0.3	28
22	Bisphenol A Affects on the Functional Properties and Proteome of Testicular Germ Cells and Spermatogonial Stem Cells in vitro Culture Model. Scientific Reports, 2017, 7, 11858.	1.6	22
23	2,3,7,8-Tetrachlorodibenzo-p-dioxin can alter the sex ratio of embryos with decreased viability of Y spermatozoa in mice. Reproductive Toxicology, 2018, 77, 130-136.	1.3	19
24	Xenoestrogenic chemicals effectively alter sperm functional behavior in mice. Reproductive Toxicology, 2011, 32, 418-424.	1.3	17
25	Lentiviral modification of enriched populations of bovine male gonocytes1. Journal of Animal Science, 2014, 92, 106-118.	0.2	17
26	Enrichment and In Vitro Culture of Spermatogonial Stem Cells from Pre-Pubertal Monkey Testes. Tissue Engineering and Regenerative Medicine, 2017, 14, 557-566.	1.6	17
27	In vitro spermatogenesis using bovine testis tissue culture techniques. Tissue Engineering and Regenerative Medicine, 2015, 12, 314-323.	1.6	16
28	Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells. International Journal of Molecular Medicine, 2015, 36, 255-262.	1.8	13
29	Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Research, 2018, 46, 4933-4949.	6.5	13
30	GDNF family receptor alpha 1 is a reliable marker of undifferentiated germ cells in bulls. Theriogenology, 2019, 132, 172-181.	0.9	12
31	Production of transgenic spermatozoa by lentiviral transduction and transplantation of porcine spermatogonial stem cells. Tissue Engineering and Regenerative Medicine, 2014, 11, 458-466.	1.6	10
32	Paternal Exposure to Bisphenol-A Transgenerationally Impairs Testis Morphology, Germ Cell Associations, and Stemness Properties of Mouse Spermatogonial Stem Cells. International Journal of Molecular Sciences, 2020, 21, 5408.	1.8	10
33	Efficient Enhancement of Lentiviral Transduction Efficiency in Murine Spermatogonial Stem Cells. Molecules and Cells, 2012, 33, 449-456.	1.0	9
34	Effect of Equilibration Time and Temperature on Murine Spermatogonial Stem Cell Cryopreservation. Biopreservation and Biobanking, 2020, 18, 213-221.	0.5	9
35	Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells. PLoS ONE, 2015, 10, e0133077.	1.1	7
36	A Phytochemical Approach to Promotion of Self-renewal in Murine Spermatogonial Stem Cell by Using Sedum Sarmentosum Extract. Scientific Reports, 2017, 7, 11441.	1.6	6

#	Article	IF	CITATIONS
37	Expression profile of spermatogenesis associated genes in male germ cells during postnatal development in mice. Journal of Animal Reproduciton and Biotechnology, 2020, 35, 289-296.	0.3	6
38	Increased Frequency of Aneuploidy in Long-Lived Spermatozoa. PLoS ONE, 2014, 9, e114600.	1.1	6
39	Testicular endothelial cells promote self-renewal of spermatogonial stem cells in ratsâ€. Biology of Reproduction, 2019, 101, 360-367.	1.2	5
40	Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. International Journal of Molecular Sciences, 2020, 21, 8644.	1.8	5
41	Antioxidant or Apoptosis Inhibitor Supplementation in Culture Media Improves Post-Thaw Recovery of Murine Spermatogonial Stem Cells. Antioxidants, 2021, 10, 754.	2.2	5
42	Transcriptome alterations in spermatogonial stem cells exposed to bisphenol A. Animal Cells and Systems, 2022, 26, 70-83.	0.8	5
43	Enhancement of in vitro culture efficiency of mesenchymal stem cells derived from deer antlers. Tissue Engineering and Regenerative Medicine, 2014, 11, 16-23.	1.6	4
44	A new 5H-purin-6-amine from the leaves of Sedum sarmentosum. Applied Biological Chemistry, 2017, 60, 109-111.	0.7	4
45	Chemotherapeutic Drugs Alter Functional Properties and Proteome of Mouse Testicular Germ Cells In Vitro. Toxicological Sciences, 2018, 164, 465-476.	1.4	4
46	Direct modification of spermatogonial stem cells using lentivirus vectors in vivo leads to efficient generation of transgenic rats. Asian Journal of Andrology, 2019, 21, 190.	0.8	4
47	Necrostatin-1 improves the cryopreservation efficiency of murine spermatogonial stem cells via suppression of necroptosis and apoptosis. Theriogenology, 2020, 158, 445-453.	0.9	4
48	Effective cryopreservation protocol for preservation of male primate (Macaca fascicularis) prepubertal fertility. Reproductive BioMedicine Online, 2020, 41, 1070-1083.	1.1	4
49	Effect of serum replacement on murine spermatogonial stem cell cryopreservation. Theriogenology, 2021, 159, 165-175.	0.9	4
50	Autophagy modulation alleviates cryoinjury in murine spermatogonial stem cell cryopreservation. Andrology, 2022, 10, 340-353.	1.9	3
51	Establishment of adult mouse testis-derived multipotent germ line stem cells and comparison of lineage-specific differentiation potential. Tissue Engineering and Regenerative Medicine, 2014, 11, 121-130.	1.6	2
52	Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers, 2019, 11, 1707.	1.7	1
53	Inhibition of Caspase-8 Activity Improves Freezing Efficiency of Male Germline Stem Cells in Mice. Biopreservation and Biobanking, 2021, , .	0.5	1
54	Induction of cardiomyocyteâ€'like cells from hair follicle cells in mice. International Journal of Molecular Medicine, 2019, 43, 2230-2240.	1.8	1

#	Article	IF	CITATIONS
55	Protein kinase C regulates self-renewal of mouse spermatogonial stem cells. Tissue Engineering and Regenerative Medicine, 2014, 11, 67-74.	1.6	O

 $\label{eq:control_problem} \textbf{56} \qquad \textbf{ì,,} \textbf{ì}^{-}\ddot{e}\textbf{Y}^{-}\textbf{-}\dot{e}, \textbf{w} \ \textbf{ì}^{\bullet}\textbf{i}^{+}\textbf{C}\textbf{i}^{\circ}\textbf{S}\ddot{\bullet} \ \textbf{ì}^{2}\textbf{1}^{\intercal}\textbf{M}, \\ \ddot{e}^{\circ\circ}\textbf{i}^{-}\textbf{i}, \ \textbf{i}^{\dagger}\textbf{µ}(\bullet\textbf{w} \ \textbf{i}^{\bullet}\textbf{2})\textbf{I}^{\bullet}\textbf{A}) \textbf{-}\bullet\hat{e}^{\bullet}\textbf{E}(\bullet\textbf{w} \ \textbf{i}^{-}\textbf{o}\hat{e}\textbf{µ}^{-}\textbf{I}). \\ \textbf{Tissue Engineering and Regenerative Medicine, 2015, 12, 37}$