
Guang Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63908/publications.pdf Version: 2024-02-01

CHANC SHAN

#	Article	IF	CITATIONS
1	Long non-coding RNA MEG8 induced by PLAG1 promotes clear cell renal cell carcinoma through the miR-495-3p/G3BP1 axis. Pathology Research and Practice, 2022, 229, 153734.	2.3	4
2	CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity. Bioengineered, 2022, 13, 10180-10190.	3.2	9
3	Transient Receptor Potential Channel 1 Potentially Serves as a Biomarker Indicating T/TNM Stages and Predicting Long-Term Prognosis in Patients With Renal Cell Carcinoma. Frontiers in Surgery, 2022, 9, 853310.	1.4	3
4	Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cellular Oncology (Dordrecht), 2021, 44, 45-59.	4.4	69
5	MEC3 interacted with miRâ€494 to repress bladder cancer progression through targeting PTEN. Journal of Cellular Physiology, 2020, 235, 1120-1128.	4.1	22
6	Long non-coding RNA NEAT1 promotes bladder progression through regulating miR-410 mediated HMGB1. Biomedicine and Pharmacotherapy, 2020, 121, 109248.	5.6	38
7	Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-Î ² signaling pathway. Experimental and Molecular Medicine, 2020, 52, 1809-1822.	7.7	69
8	Descending-SHIP2-mediated radiosensitivity enhancement through PI3K/Akt signaling pathway in laryngeal squamous cell carcinoma. Biomedicine and Pharmacotherapy, 2019, 118, 109392.	5.6	4
9	DGCR5 promotes cancer stem cellâ€like properties of radioresistant laryngeal carcinoma cells by sponging miRâ€506 via Wnt pathway. Journal of Cellular Physiology, 2019, 234, 18423-18431.	4.1	20
10	Knockdown of DGCR5 enhances the radiosensitivity of human laryngeal carcinoma cells via inducing miRâ€195. Journal of Cellular Physiology, 2019, 234, 12918-12925.	4.1	27
11	Certain BCG-reactive responses are associated with bladder cancer prognosis. Cancer Immunology, Immunotherapy, 2018, 67, 797-803.	4.2	5
12	Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro. Experimental Cell Research, 2017, 352, 123-129.	2.6	21
13	Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways <i>in vivo</i> and <i>in vitro</i> . Renal Failure, 2017, 39, 423-431.	2.1	40
14	Astragaloside Ⅳ from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-ĐºB in vivo and in vitro. International Immunopharmacology, 2017, 42, 18-24.	3.8	82
15	Expression of Tiam1 and Rac1 proteins in renal cell carcinoma and its clinical-pathological features. International Journal of Clinical and Experimental Pathology, 2017, 10, 11114-11121.	0.5	2
16	Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro. Experimental and Therapeutic Medicine, 2016, 11, 1611-1616.	1.8	20
17	Expression of cyclin D1 and cyclin E in urothelial bladder carcinoma detected in tissue chips using a quantum dot immunofluorescence technique. Oncology Letters, 2015, 10, 1271-1276.	1.8	15
18	Increase in Blood Glutathione and Erythrocyte Proteins Related to Glutathione Generation, Reduction and Utilization in African-American Old Women with Diabetes. Journal of Science, Technology and Environment, 2015, 5, .	1.0	2

#	Article	IF	CITATIONS
19	Expression of HLA-G in hemangioma and its clinical significance. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 713-718.	1.0	4
20	The protective effect of ascorbic acid and thiamine supplementation against damage caused by lead in the testes of mice. Journal of Huazhong University of Science and Technology [Medical Sciences], 2009, 29, 68-72.	1.0	36