
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390799/publications.pdf Version: 2024-02-01

IIIAN RAENA

#	Article	IF	CITATIONS
1	Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Physical Review Letters, 2004, 93, 197401.	2.9	784
2	Artificial magnetic metamaterial design by using spiral resonators. Physical Review B, 2004, 69, .	1.1	367
3	On the resonances and polarizabilities of split ring resonators. Journal of Applied Physics, 2005, 98, 033103.	1.1	120
4	Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces. IEEE Transactions on Antennas and Propagation, 2017, 65, 4124-4133.	3.1	98
5	Self-complementary metasurfaces for linear-to-circular polarization conversion. Physical Review B, 2015, 92, .	1.1	84
6	Electroinductive waves in chains of complementary metamaterial elements. Applied Physics Letters, 2006, 88, 083503.	1.5	77
7	Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory and experiments. Physical Review B, 2005, 72, .	1.1	75
8	Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry. Physical Review B, 2007, 76, .	1.1	72
9	Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials. Physical Review A, 2008, 78, .	1.0	70
10	Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction. Journal of Applied Physics, 2008, 104, 114501.	1.1	67
11	Application of complementary split-ring resonators to the design of compact narrow band-pass structures in microstrip technology. Microwave and Optical Technology Letters, 2005, 46, 508-512.	0.9	64
12	Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory. Physical Review B, 2005, 72, .	1.1	62
13	Self-Complementary Metasurface for Designing Narrow Band Pass/Stop Filters. IEEE Microwave and Wireless Components Letters, 2013, 23, 291-293.	2.0	62
14	Ab initioanalysis of frequency selective surfaces based on conventional and complementary split ring resonators. Journal of Optics, 2005, 7, S38-S43.	1.5	51
15	Electrically small isotropic three-dimensional magnetic resonators for metamaterial design. Applied Physics Letters, 2006, 88, 134108.	1.5	50
16	Isotropic frequency selective surfaces made of cubic resonators. Applied Physics Letters, 2007, 91, .	1.5	44
17	Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media. Physical Review B, 2008, 77, .	1.1	38
18	Complementary split-ring resonator for compact waveguide filter design. Microwave and Optical Technology Letters, 2005, 46, 88-92.	0.9	32

#	Article	IF	CITATIONS
19	Broadband Huygens' Metasurface Based on Hybrid Resonances. Physical Review Applied, 2018, 10, .	1.5	32
20	Spatial Angular Filtering by FSSs Made of Chains of Interconnected SRRs and CSRRs. IEEE Microwave and Wireless Components Letters, 2013, 23, 477-479.	2.0	30
21	Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators. Microwave and Optical Technology Letters, 2004, 42, 386-388.	0.9	28
22	Resonance and Cross-Polarization Effects in Conventional and Complementary Split Ring Resonator Periodic Screens. Electromagnetics, 2006, 26, 247-260.	0.3	28
23	Bulk Metamaterials Made of Resonant Rings. Proceedings of the IEEE, 2011, 99, 1660-1668.	16.4	27
24	Nonlocal homogenization of an array of cubic particles made of resonant rings. Metamaterials, 2009, 3, 115-128.	2.2	24
25	An artificial dielectric slab for ultra high-field MRI: Proof of concept. Journal of Magnetic Resonance, 2020, 320, 106835.	1.2	23
26	Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters. Applied Physics Letters, 2021, 118, .	1.5	22
27	Metamaterial-inspired perfect tunnelling in semiconductor heterostructures. New Journal of Physics, 2011, 13, 083011.	1.2	21
28	Reducing losses and dispersion effects in multilayer metamaterial tunnelling devices. New Journal of Physics, 2005, 7, 166-166.	1.2	19
29	Novel microstrip backward coupler with metamaterial cells for fully planar fabrication techniques. Microwave and Optical Technology Letters, 2006, 48, 1205-1209.	0.9	19
30	Surface Waves on Self-Complementary Metasurfaces: All-Frequency Hyperbolicity, Extreme Canalization, and TE-TM Polarization Degeneracy. Physical Review X, 2021, 11, .	2.8	17
31	Theory of three-dimensional subdiffraction imaging. Applied Physics Letters, 2006, 89, 211113.	1.5	16
32	Improving homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface. Magnetic Resonance in Medicine, 2022, 87, 496-508.	1.9	15
33	Frequency-Controllable Polarization Rotation of THz Waves With an SCMS. IEEE Transactions on Antennas and Propagation, 2020, 68, 1491-1502.	3.1	14
34	A Focusing Circular-Polarization THz Beam Splitter Based on a Self-Complementary Metasurface. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 165-174.	2.0	12
35	Extension of Babinet's principle for plasmonic metasurfaces. Applied Physics Letters, 2021, 119, .	1.5	11
36	A perfect lens for ballistic electrons: An electron-light wave analogy. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 9-15.	1.0	8

#	Article	IF	CITATIONS
37	Direct Polarisability Extraction Method. , 2006, , .		7
38	A band-pass/stop filter made of SRRs and C-SRRs. , 2011, , .		7
39	Thickness effects on the resonance of metasurfaces made of SRRs and C-SRRs. , 2013, , .		6
40	A general method to retrieve electromagnetic polarizability tensors of metamaterial resonators. , 2013, , .		5
41	Optimal angular stability of reflectionless metasurface absorbers. Physical Review B, 2021, 103, .	1.1	5
42	Miniaturization and Characterization of Metamaterial Resonant Particles. , 2008, , .		4
43	Extremely thin Fabry-Perot resonators based on high permitivity artificial dielectric. , 2016, , .		4
44	Metasurfaces made of transmission lines: A way to spatial filtering. , 2013, , .		3
45	Metasurfaces for angular filtering and beam scanning. , 2014, , .		3
46	Waveguide model for thick complementary split ring resonators. , 2014, , .		3
47	Linear to circular polarization converters based on self-complementary metasurfaces. , 2014, , .		3
48	Broadband transparent metasurfaces for full phase shift and polarization control. , 2016, , .		3
49	Broadband-Reflectionless Perfect Absorber Made of Planar Resonators. , 2018, , .		3
50	Self-complementary metasurfaces as efficient tools for polarization sensitive control of THz beams. , 2019, , .		3
51	Left-handed metamaterials matched to free space through mechanical tuning. , 2019, , .		3
52	Babinet's principle and saturation of the resonance frequency of scaled-down complementary metasurfaces. Applied Physics Letters, 2021, 118, .	1.5	3
53	Equivalent circuit model for thick split ring resonators and thick spiral resonators. , 2014, , .		2
54	Broadband Uniaxial Dielectric-Magnetic Metamaterial with Giant Anisotropy Factor. , 2020, , .		2

4

#	Article	IF	CITATIONS
55	Retrieval of the Constitutive Parameters and Dispersion Relation of Glide-Symmetric Metamaterials via the Multimodal Transfer Matrix Method. , 2020, , .		2
56	Experimental demonstration of the saturation and weakening of the resonant response of the SRR and the CSRR. , 2013, , .		1
57	Duality for 3D metamaterial resonators?. , 2014, , .		1
58	Self-complementary zig-zag metasurfaces for designing circular polarizing beam splitters. , 2015, , .		1
59	Low plasma frequency zigzag metamaterials. , 2016, , .		1
60	Self-complementary tessellations as universal design approach for LP-to-CP transforming frequency selective surfaces. , 2018, , .		1
61	Quasi-isotropic Huygens resonant scatterer in microwaves. , 2019, , .		1
62	Comparison of angular-selective metasurfaces as tools for sub-THz single-frequency sensing. Journal of Physics: Conference Series, 2021, 2015, 012158.	0.3	1
63	On the Lorentz's homogenization method applied to metamaterials presenting strong spatial dispersion. , 2010, , .		0
64	Extremely thin infrared absorbers made of metallo-dielectric core-shell nanospheres. , 2013, , .		0
65	The duality relation for 2d complementary optical nanocircuits. , 2013, , .		0
66	Theoretical constraints on reflection and transmission through metasurfaces. , 2014, , .		0
67	Controlling the cross-polarization effects of metasurfaces from the lowest to the highest possible value. , 2015, , .		0
68	Resonating elements longer than the unit cell: A way to make very dense broadband left-handed metamaterials. , 2015, , .		0
69	Experimental characterization of microwave self-complimentary metasurfaces for linear-to-circular polarization transform. , 2016, , .		0
70	The Physics of Self-Complementary Metasurfaces Under Circularly Polarized Waves. , 2018, , .		0
71	Validity of homogenization for Artificial Plasmas: Straight Strips Versus Zigzag Strips. , 2018, , .		0
72	Huygens' metasurfaces covering from waveplates to perfect absorbers. , 2018, , .		0

5

#	Article	IF	CITATIONS
73	Characterizing Metamaterial Resonators and Finite Metasurfaces by the Method of Moments. , 2018, , .		Ο
74	The Physics of Self-Complementary Metasurfaces. , 2018, , .		0
75	A linear-to-circular polarization converter with broadband transparency based on Huygensâ $\in^{\rm M}$ metasurface. , 2018, , .		Ο
76	Non-Linear High Permittivity Artificial Dielectric. , 2019, , .		0
77	Reflectionless perfect absorber with low angular and polarization sensitivity. , 2019, , .		Ο
78	Artificial dielectric for 7T MRI. AIP Conference Proceedings, 2020, , .	0.3	0