Oki Muraza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390561/publications.pdf

Version: 2024-02-01

		101496	114418
158	5,477	36	63
papers	citations	h-index	g-index
159	159	159	5686
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Catalyst development for tar reduction in biomass gasification: Recent progress and the way forward. Journal of Environmental Management, 2022, 305, 114274.	3.8	27
2	Sustainable Diesel from Pyrolysis of Unsaturated Fatty Acid Basic Soaps: The Effect of Temperature on Yield and Product Composition. Molecules, 2022, 27, 667.	1.7	3
3	Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review. Molecular Catalysis, 2022, 523, 112131.	1.0	6
4	Waste materials from palm oil plant as exploratory catalysts for FAME biodiesel production. Applied Nanoscience (Switzerland), 2022, 12, 3703-3719.	1.6	7
5	Geopolymer catalysts derived from palm oil mill ash for biodiesel production from Calophyllum inophyllum oil. Applied Nanoscience (Switzerland), 2022, 12, 3735-3745.	1.6	2
6	Catalytic Cracking of <i>n</i> -Dodecane to Chemicals: Effect of Variable-Morphological ZSM-5 Zeolites Synthesized Using Various Silica Sources. ACS Omega, 2022, 7, 10317-10329.	1.6	11
7	A Review on the Conversion of Synthetic Gas to LPG over Hybrid Nanostructure Zeolites Catalysts. ChemistrySelect, 2022, 7, .	0.7	8
8	Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: A mini review. Microporous and Mesoporous Materials, 2022, 336, 111846.	2.2	10
9	Acidity modifications of nanozeolite-Y for enhanced selectivity to olefins from the steam catalytic cracking of dodecane. RSC Advances, 2022, 12, 18274-18281.	1.7	5
10	Highlighting the Greener Shift in Transportation Energy and Fuels Based on Novel Catalytic Materials. Energy &	2.5	10
11	Nano BEA zeolite catalysts for the selective catalytic cracking of n-dodecane to light olefins. RSC Advances, 2021, 11, 7904-7912.	1.7	10
12	CO2-assisted propane dehydrogenation over of zirconia-titania catalysts: Effect of the carbon dioxide to propane ratios on olefin yields. Journal of Environmental Chemical Engineering, 2021, 9, 104989.	3.3	8
13	Recent Progress in Low-Cost Catalysts for Pyrolysis of Plastic Waste to Fuels. Catalysts, 2021, 11, 837.	1.6	57
14	Conversion of Methanol to Olefins over Modified OSDA-Free CHA Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 12189-12199.	1.8	7
15	Green in-situ incorporation of metals in chabazite (CHA) zeolite. Microporous and Mesoporous Materials, 2021, 326, 111375.	2.2	5
16	Transformation of low-rank coal to clean syngas and power via thermochemical route. Energy, 2021, 236, 121505.	4.5	7
17	Towards low-temperature catalysts for sustainable fuel from plastic: A review. Journal of Environmental Chemical Engineering, 2021, 9, 106655.	3.3	12
18	Gasification of wet microalgae to produce H2-rich syngas and electricity: A thermodynamic study considering exergy analysis. Renewable Energy, 2020, 147, 2195-2205.	4.3	33

#	Article	IF	CITATIONS
19	Syngas production from municipal solid waste with a reduced tar yield by three-stages of air inlet to a downdraft gasifier. Fuel, 2020, 263, 116509.	3.4	30
20	Steam cracking of green diesel (C12) to BTX and olefins over silane-treated hierarchical BEA. Fuel, 2020, 263, 116624.	3.4	16
21	Recent progress on low rank coal conversion to dimethyl ether as clean fuel: A critical review. Journal of Cleaner Production, 2020, 277, 124024.	4.6	29
22	Effects of metal support interaction on dry reforming of methane over Ni/ <scp>Ceâ€Al₂O₃</scp> catalysts. Canadian Journal of Chemical Engineering, 2020, 98, 2425-2434.	0.9	12
23	Improved combustion performances and lowered emissions of CNG-diesel dual fuel engine under low load by optimizing CNG injection parameters. Fuel, 2020, 269, 117202.	3.4	34
24	One-pot biosynthesis of SnO2 quantum dots mediated by Clitoria ternatea flower extract for photocatalytic degradation of rhodamine B. Journal of Environmental Chemical Engineering, 2020, 8, 103879.	3.3	40
25	Development of New Kinetic Models for Methanol to Hydrocarbons over a Ca-ZSM-5 Catalyst. Energy & Ener	2.5	7
26	Sonocatalytic degradation of rhodamine B using tin oxide/ montmorillonite. Journal of Water Process Engineering, 2020, 37, 101418.	2.6	18
27	Biogasoline Production from Palm Oil: Optimization of Catalytic Cracking Parameters. Arabian Journal for Science and Engineering, 2020, 45, 7257-7266.	1.7	12
28	Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science and Technology, 2020, 10, 1582-1596.	2.1	35
29	Waste materials for production of biodiesel catalysts: Technological status and prospects. Journal of Cleaner Production, 2020, 263, 121358.	4.6	42
30	Recent progress on mixing technology for water-emulsion fuel: A review. Energy Conversion and Management, 2020, 213, 112817.	4.4	39
31	Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chemistry, 2020, 18, 1148-1166.	1.0	47
32	Spent Bleaching Earth Supported CeFeO3 Perovskite for Visible Light Photocatalytic Oxidation of Methylene Blue. Journal of Applied Materials and Technology, 2020, 1, 81-87.	1.4	16
33	LaMnO3 Perovskite Activation of Peroxymonosulfate for Catalytic Palm Oil Mill Secondary Effluent Degradation. Journal of Applied Materials and Technology, 2020, 2, 27-35.	1.4	17
34	Modified Lanthanum–Zeolite for Sensitive Electrochemical Detection of Heavy Metal Ions. Arabian Journal for Science and Engineering, 2019, 44, 217-226.	1.7	9
35	Choreographing boron-aluminum acidity and hierarchical porosity in *BEA zeolite by in-situ hydrothermal synthesis for a highly selective methanol to propylene catalyst. Microporous and Mesoporous Materials, 2019, 273, 249-255.	2.2	21
36	OSDA-free chabazite (CHA) zeolite synthesized in the presence of fluoride for selective methanol-to-olefins. Microporous and Mesoporous Materials, 2019, 274, 277-285.	2.2	31

#	Article	IF	CITATIONS
37	Process design and technoâ€economic analysis of ethyl levulinate production from carbon dioxide and 1,4â€butanediol as an alternative biofuel and fuel additive. International Journal of Energy Research, 2019, 43, 5932-5945.	2.2	5
38	Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts. Energies, 2019, 12, 2872.	1.6	50
39	Experimental Investigation of Aluminosilicate Nanoparticles for Enhanced Recovery of Waxy Crude Oil. Energy & Samp; Fuels, 2019, 33, 6076-6082.	2.5	20
40	Production of Sustainable Diesel via Decarboxylation of Palm Stearin Basic Soaps. Energy & Energy & Production of Sustainable Diesel via Decarboxylation of Palm Stearin Basic Soaps. Energy & Production of Sustainable Diesel via Decarboxylation of Palm Stearin Basic Soaps. Energy & Production of Sustainable Diesel via Decarboxylation of Palm Stearin Basic Soaps. Energy & Production of Palm Stearing Basic	2.5	6
41	Improved Municipal Solid Waste Gasification Efficiency Using a Modified Downdraft Gasifier with Variations of Air Input and Preheated Air Temperature. Energy & Down 19, 33, 11049-11056.	2.5	15
42	Stable Boron-Modified ZSM-22 Zeolite Catalyst for Selective Production of Propylene from Methanol. Energy & Ene	2.5	7
43	TiO2-pillared saponite and photosensitization using a ruthenium complex for photocatalytic enhancement of the photodegradation of bromophenol blue. Applied Clay Science, 2019, 183, 105302.	2.6	32
44	Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon, 2019, 5, e02766.	1.4	46
45	The role of acidity, side pocket, and steam on maximizing propylene yield from light naphtha cracking over one-dimensional zeolites: Case studies of EU-1 and disordered ZSM-48. Fuel, 2019, 258, 116034.	3.4	19
46	Catalytic thermal conversion of CO2 into fuels: Perspective and challenges. Renewable and Sustainable Energy Reviews, 2019, 115, 109333.	8.2	111
47	Zeolite catalyst design for the conversion of glucose to furans and other renewable fuels. Fuel, 2019, 258, 115851.	3.4	25
48	Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry, 2019, 7, 233.	1.8	26
49	Advances in Catalyst Design for the Conversion of Methane to Aromatics: A Critical Review. Catalysis Surveys From Asia, 2019, 23, 149-170.	1.0	35
50	Propene Adsorption-Chemisorption Behaviors on H-SAPO-34 Zeolite Catalysts at Different Temperatures. Catalysts, 2019, 9, 919.	1.6	18
51	Synthesis of phosphate-modified zeolite as a modifier in carbon paste electrode for nitrite electrochemical detection. Journal of Materials Science: Materials in Electronics, 2019, 30, 3283-3293.	1.1	4
52	Microwave-Assisted Hydrothermal Synthesis of CHA Zeolite for Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 60-68.	1.8	19
53	An exciting opportunity for zeolite adsorbent design in separation of C4 olefins through adsorptive separation. Separation and Purification Technology, 2019, 221, 126-151.	3.9	26
54	Fabrication zone of OSDA-free and seed-free mordenite crystals. Powder Technology, 2019, 342, 992-997.	2.1	9

#	Article	IF	CITATIONS
55	Hydrothermal Stabilization of Rich Al–BEA Zeolite by Post-Synthesis Addition of Zr for Steam Catalytic Cracking of <i>n</i> -Dodecane. Energy & Energy & Steels, 2018, 32, 5501-5508.	2.5	7
56	Upgrading oil sand bitumen under superheated steam over ceria-based nanocomposite catalysts. Applied Energy, 2018, 218, 1-9.	5.1	36
57	Orchestrating fluoride effect, secondary growth and microwave irradiation in the synthesis of EU-1/ZSM-48 intergrowth crystals for the conversion of dimethyl ether to olefins. Microporous and Mesoporous Materials, 2018, 267, 115-123.	2.2	8
58	Catalytic Enhancement of SAPO-34 for Methanol Conversion to Light Olefins Using in Situ Metal Incorporation. Industrial & Description (Samp) (1997) (1997) (1998) (1.8	26
59	Palladium nanoparticles supported on ceria thin film for capillary microreactor application. Chemical Engineering Research and Design, 2018, 132, 479-491.	2.7	9
60	Fluidizable NiO–Fe 2 O 3 /SiO 2 –γAl 2 O 3 for tar (toluene) conversion in biomass gasification. Chemical Engineering Research and Design, 2018, 116, 754-762.	2.7	27
61	Hydrocracking catalysts based on hierarchical zeolites: A recent progress. Journal of Industrial and Engineering Chemistry, 2018, 61, 265-280.	2.9	38
62	Zirconia-Based Nanocatalysts in Heavy Oil Upgrading: A Mini Review. Energy & Energy	2.5	29
63	Isomerization of <i>n</i> -Butane over Cost-Effective Mordenite Catalysts Fabricated via Recrystallization of Natural Zeolites. Industrial & Engineering Chemistry Research, 2018, 57, 1894-1902.	1.8	28
64	Selective catalytic cracking of n-hexane to olefins over SSZ-54 fabricated by facile and novel dual templating method. Fuel, 2018, 227, 48-58.	3.4	8
65	Hydrothermally stable acid-modified ZSM-22 zeolite for selective propylene production via steam-assisted catalytic cracking of n-hexane. Microporous and Mesoporous Materials, 2018, 260, 30-39.	2.2	22
66	Microwave assisted synthesis of MTT-TON intergrowth crystals for the catalytic conversion of naphtha to olefins. Microporous and Mesoporous Materials, 2018, 260, 253-259.	2.2	8
67	Dimethyl ether-to-olefins over aluminum rich ZSM-5: The role of Ca and La as modifiers. Fuel, 2018, 211, 18-26.	3.4	40
68	Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts. Renewable and Sustainable Energy Reviews, 2018, 81, 1037-1048.	8.2	108
69	Lanthanum, cerium, and boron incorporated ZSM-12 zeolites for catalytic cracking of n -hexane. Journal of Analytical and Applied Pyrolysis, 2018, 129, 231-240.	2.6	20
70	Stable Production of Gasoline-Ranged Hydrocarbons from Dimethyl Ether over Iron-Modified ZSM-22 Zeolite. Energy & Energy & 2018, 32, 11796-11801.	2.5	12
71	Fluidizable Fe–Co/Ce–ZrO ₂ Catalysts for Steam Reforming of Toluene as a Tar Surrogate in Biomass Gasification. Energy & Fuels, 2018, 32, 12833-12842.	2.5	24
72	Vegetable Oil to Biolubricants: Review on Advanced Porous Catalysts. Energy & Energy	2.5	31

#	Article	IF	CITATIONS
73	Poly aromatic hydrocarbon (naphthalene) conversion into value added chemical (tetralin): Activity and stability of MoP/AC catalyst. Journal of Environmental Chemical Engineering, 2018, 6, 4525-4530.	3.3	18
74	Producing Biodiesel from Waste Cooking Oil with Catalytic Membrane Reactor: Process Design and Sensitivity Analysis. Arabian Journal for Science and Engineering, 2018, 43, 6261-6269.	1.7	13
75	A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5. Journal of Nanoscience and Nanotechnology, 2018, 18, 5711-5720.	0.9	1
76	Syngas production from CO2 reforming of methane over Ni supported on hierarchical silicalite-1 fabricated by microwave-assisted hydrothermal synthesis. International Journal of Hydrogen Energy, 2018, 43, 13177-13189.	3.8	31
77	Sustainable Production of Glycerol Carbonate from By-product in Biodiesel Plant. Waste and Biomass Valorization, 2017, 8, 141-152.	1.8	30
78	Novel Ce-incorporated zeolite modified-carbon paste electrode for simultaneous trace electroanalysis of lead and cadmium. Microporous and Mesoporous Materials, 2017, 243, 1-8.	2.2	21
79	Enhancement of hydrogen production in a modified moving bed downdraft gasifier –ÂAÂthermodynamic study by including tar. International Journal of Hydrogen Energy, 2017, 42, 10971-10985.	3.8	37
80	A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, 2017, 73, 1352-1365.	8.2	485
81	Electrochemical detection of thiocyanate using phosphate-modified zeolite carbon paste electrodes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 236-243.	2.7	14
82	Steam catalytic cracking of heavy naphtha (C12) to high octane naphtha over B-MFI zeolite. Applied Catalysis B: Environmental, 2017, 210, 432-443.	10.8	31
83	Stability improvement of zeolite catalysts under hydrothermal conditions for their potential applications in biomass valorization and crude oil upgrading. Microporous and Mesoporous Materials, 2017, 249, 42-54.	2.2	29
84	Steam Catalytic Cracking of <i>n</i> -Dodecane over Ni and Ni/Co Bimetallic Catalyst Supported on Hierarchical BEA Zeolite. Energy & Samp; Fuels, 2017, 31, 5482-5490.	2.5	31
85	Crystal growth study of K-F nanozeolite and its catalytic behavior in Aldol condensation of benzaldehyde and heptanal enhanced by microwave heating. Materials Chemistry and Physics, 2017, 196, 295-301.	2.0	33
86	Mechanochemical Route and Recrystallization Strategy To Fabricate Mordenite Nanoparticles from Natural Zeolites. Crystal Growth and Design, 2017, 17, 3313-3320.	1.4	31
87	Feed compositions and gasification potential ofÂseveral biomasses including a microalgae: AÂthermodynamic modeling approach. International Journal of Hydrogen Energy, 2017, 42, 17009-17019.	3.8	52
88	Iron Oxide over Silica-Doped Alumina Catalyst for Catalytic Steam Reforming of Toluene as a Surrogate Tar Biomass Species. Energy & Surrogate Tar Biomass Species. Energy & Surrogate Tar Biomass Species. Energy & Surrogate Tar Biomass Species.	2.5	54
89	Conversion of Dimethyl Ether to Olefins over Nanosized Mordenite Fabricated by a Combined High-Energy Ball Milling with Recrystallization. Industrial & Engineering Chemistry Research, 2017, 56, 4258-4266.	1.8	25
90	Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins. Microporous and Mesoporous Materials, 2017, 241, 79-88.	2.2	31

#	Article	IF	Citations
91	Stability Assessment of Regenerated Hierarchical ZSM-48 Zeolite Designed by Post-Synthesis Treatment for Catalytic Cracking of Light Naphtha. Energy & Energy & 2017, 31, 14097-14103.	2.5	27
92	Selective Isomerization of <i>n</i> -Butane over Mordenite Nanoparticles Fabricated by a Sequential Ball Milling–Recrystallization–Dealumination Route. Energy &	2.5	20
93	Hydrothermal synthesis of zeolite a from bamboo leaf biomass and its catalytic activity in cyanoethylation of methanol under autogenic pressure and air conditions. Materials Chemistry and Physics, 2017, 201, 78-85.	2.0	28
94	Iron- and Cobalt-Doped Ceria–Zirconia Nanocomposites for Catalytic Cracking of Naphtha with Regenerative Capability. Energy & Samp; Fuels, 2017, 31, 12612-12623.	2.5	16
95	Alkali Metal Ion-Exchanged Zeolite X from Bamboo Leaf Biomass as Base Catalysts in Cyanoethylation of Methanol Enhanced by Non-Microwave Instant Heating. Australian Journal of Chemistry, 2017, 70, 1239.	0.5	2
96	Viscosity Reduction of Heavy Oil Using Nanocatalyst in Aquathermolysis Reaction. KONA Powder and Particle Journal, 2016, 33, 3-16.	0.9	34
97	Development of surface modified mordenite catalysts and their stability in hot liquid water. Advanced Powder Technology, 2016, 27, 1404-1410.	2.0	6
98	Ring opening of hydrocarbons for diesel and aromatics production: Design of heterogeneous catalytic systems. Fuel, 2016, 181, 618-629.	3.4	44
99	Glycerol Carbonate Production from Biodiesel Waste Over Modified Natural Clinoptilolite. Waste and Biomass Valorization, 2016, 7, 1349-1356.	1.8	25
100	Synthesis of zeolite–magadiite composites: Effects of co-solvent and aluminum source. Particuology, 2016, 27, 34-39.	2.0	5
101	Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides. Catalysis Science and Technology, 2016, 6, 7852-7859.	2.1	39
102	Conversion of Isobutylene to Octane-Booster Compounds after Methyl <i>tert</i> Phaseout: The Role of Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2016, 55, 11193-11210.	1.8	29
103	Steam Catalytic Cracking of <i>n</i> -Hexane over Modified MTW Zeolites Impregnated by Extra-Framework Elements. Energy & Extra-Framework Elements. Energy & Extra-Framework Elements. Energy & Extra-Framework Elements.	2.5	9
104	A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 29-44.	2.7	59
105	Hydrothermal Stability of One-Dimensional Pore ZSM-22 Zeolite in Hot Water. Journal of Physical Chemistry C, 2016, 120, 22918-22926.	1.5	23
106	Microwave-assisted hydrothermal synthesis of mordenite zeolite: Optimization of synthesis parameters. Microporous and Mesoporous Materials, 2016, 232, 211-217.	2.2	30
107	Fabrication of desilicated MTW zeolite and its application in catalytic cracking of n-heptane. Advanced Powder Technology, 2016, 27, 372-378.	2.0	11
108	Synthesis of silicalite-1 using fluoride media under microwave irradiation. Microporous and Mesoporous Materials, 2016, 233, 140-147.	2.2	10

#	Article	IF	Citations
109	Robust surface-modified Beta zeolite for selective production of lighter fuels by steam-assisted catalytic cracking from heavy oil. Fuel, 2016, 168, 61-67.	3.4	29
110	Hydrothermal stability of MTT zeolite in hot water: The role of La andÂCe. Microporous and Mesoporous Materials, 2016, 233, 93-101.	2.2	18
111	Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths. Particuology, 2016, 24, 138-141.	2.0	11
112	Investigation of crucial synthesis parameters of rich Al-MTT framework zeolite: Toward more determination for synthesis zone of SSZ-32. Microporous and Mesoporous Materials, 2016, 227, 48-56.	2.2	8
113	Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. Journal of Industrial and Engineering Chemistry, 2016, 37, 1-13.	2.9	174
114	Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 20-25.	2.7	35
115	Facile control of nanosized ZSM-22 crystals using dynamic crystallization technique. Microporous and Mesoporous Materials, 2016, 227, 16-22.	2.2	21
116	Lanthanum-impregnated zeolite modified carbon paste electrode for determination of Cadmium (II). Microporous and Mesoporous Materials, 2016, 225, 164-173.	2.2	14
117	Development of mesoporous ZSM-12 zeolite and its application in alkylation of 2-methylnaphthalene. Research on Chemical Intermediates, 2016, 42, 6437-6448.	1.3	20
118	Dimethyl ether to olefins over dealuminated mordenite (MOR) zeolites derived from natural minerals. Journal of Natural Gas Science and Engineering, 2016, 28, 566-571.	2.1	46
119	Waste to liquid fuels: potency, progress and challenges. International Journal of Energy Research, 2015, 39, 1451-1478.	2.2	34
120	From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review. Journal of Natural Gas Science and Engineering, 2015, 25, 303-316.	2.1	112
121	Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction. Journal of Analytical and Applied Pyrolysis, 2015, 114, 1-10.	2.6	42
122	Steam-assisted catalytic cracking of n-hexane over La-Modified MTT zeolite for selective propylene production. Journal of Analytical and Applied Pyrolysis, 2015, 116, 272-280.	2.6	24
123	The effect of non-ionic surfactant in the microwave-assisted synthesis of MTT zeolite optimized by Taguchi method. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 314-321.	2.7	10
124	A review on coke management during dry reforming of methane. International Journal of Energy Research, 2015, 39, 1196-1216.	2.2	279
125	Maximizing Diesel Production through Oligomerization: A Landmark Opportunity for Zeolite Research. Industrial & Description of the Research of	1.8	64
126	Microwave-assisted hydrothermal synthesis of submicron ZSM-22 zeolites and their applications in light olefin production. Microporous and Mesoporous Materials, 2015, 206, 136-143.	2.2	37

#	Article	IF	CITATIONS
127	Development of desilicated EU-1 zeolite and its application in conversionÂofÂdimethyl ether to olefins. Microporous and Mesoporous Materials, 2015, 207, 9-16.	2.2	31
128	Role of zeolite catalysts for benzene removal from gasoline via alkylation: A review. Microporous and Mesoporous Materials, 2015, 213, 169-180.	2.2	38
129	Zeolite catalysts in upgrading of bioethanol to fuels range hydrocarbons: A review. Journal of Industrial and Engineering Chemistry, 2015, 31, 1-14.	2.9	67
130	Catalytic Upgrading of Bioethanol to Fuel Grade Biobutanol: A Review. Industrial & Engineering Chemistry Research, 2015, 54, 7181-7194.	1.8	69
131	The role of alcohols and diols as co-solvents in fabrication of TON zeolite. Journal of Industrial and Engineering Chemistry, 2015, 29, 112-119.	2.9	16
132	Aquathermolysis of heavy oil: A review and perspective on catalyst development. Fuel, 2015, 157, 219-231.	3.4	181
133	Development of hierarchical EU-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene (DTP). Applied Catalysis A: General, 2015, 497, 127-134.	2.2	37
134	Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: A review. Journal of Industrial and Engineering Chemistry, 2015, 29, 12-23.	2.9	104
135	Microwave assisted growth of SAPO-34 on \hat{l}^2 -SiC foams for methanol dehydration to dimethyl ether. Chemical Engineering Journal, 2015, 274, 113-122.	6.6	52
136	Recent Developments on Silicoaluminates and Silicoaluminophosphates in the Methanol-to-Propylene Reaction: A Mini Review. Industrial & Engineering Chemistry Research, 2015, 54, 4891-4905.	1.8	74
137	In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support. Journal of Crystal Growth, 2015, 432, 123-128.	0.7	5
138	In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Conversion and Management, 2015, 105, 338-354.	4.4	207
139	Hydroisomerization of sustainable feedstock in biomass-to-fuel conversion: a critical review. International Journal of Energy Research, 2015, 39, 741-759.	2.2	29
140	Role of crystal growth modifiers in the synthesis of ZSM-12 zeolite. Advanced Powder Technology, 2015, 26, 188-192.	2.0	10
141	Selective Production of Propylene from Methanol Conversion over Nanosized ZSM-22 Zeolites. Industrial & Description of Engineering Chemistry Research, 2014, 53, 19498-19505.	1.8	42
142	Controlling naphtha cracking using nanosized TON zeolite synthesized in the presence of polyoxyethylene surfactant. Journal of Analytical and Applied Pyrolysis, 2014, 110, 338-345.	2.6	18
143	Selective catalytic cracking of n-hexane to propylene over hierarchical MTT zeolite. Fuel, 2014, 135, 105-111.	3.4	55
144	Isomerization and Alkylation of Biomass-Derived Compounds in Aqueous Media over Hydrophobic Solid Acid Catalysts: A Mini Review. Industrial & Engineering Chemistry Research, 2014, 53, 17869-17877.	1.8	16

#	Article	IF	CITATIONS
145	Carbon nanostructures grown on 3D silicon carbide foams: Role of intermediate silica layer and metal growth. Chemical Engineering Journal, 2014, 258, 110-118.	6.6	11
146	Biodiesel production from algae by using heterogeneous catalysts: AÂcritical review. Energy, 2014, 78, 72-83.	4.5	160
147	Effect of synthesis parameters and ion exchange on crystallinity and morphology of EU-1 zeolite. Journal of Alloys and Compounds, 2014, 617, 408-412.	2.8	18
148	Synthesis of ZSM-12 (MTW) with different Al-source: Towards understanding the effects of crystallization parameters. Microporous and Mesoporous Materials, 2014, 194, 31-37.	2.2	27
149	Controlled and rapid growth of MTT zeolite crystals with low-aspect-ratio in a microwave reactor. Chemical Engineering Journal, 2013, 226, 367-376.	6.6	40
150	Metal Carbides in Fuel Cell Cathode. Lecture Notes in Energy, 2013, , 665-687.	0.2	0
151	H2S adsorption by Ag and Cu ion exchanged faujasites. Microporous and Mesoporous Materials, 2011, 146, 127-133.	2.2	71
152	Synthesis of Zeolite A Crystals in the Presence of Crystal Growth Inhibitors by Microwave-Assisted Hydrothermal Technique. , $2011,\ldots$		0
153	Enhancement of the stability of microporous silica films in non-aqueous solvents at elevated temperature. Microporous and Mesoporous Materials, 2009, 124, 20-29.	2.2	9
154	Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films. Applied Catalysis A: General, 2009, 368, 87-96.	2.2	22
155	Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactors. Chemical Engineering Journal, 2008, 135, S117-S120.	6.6	24
156	Mesoporous silica films as catalyst support for microstructured reactors: Preparation and characterization. Chemical Engineering Journal, 2008, 135, S99-S103.	6.6	32
157	Preparation and characterization of bimetallic catalysts supported on mesoporous silica films. Studies in Surface Science and Catalysis, 2006, , 167-174.	1.5	8
158	Production of Lighter Hydrocarbons by Steam-Assisted Catalytic Cracking of Heavy Oil over Silane-Treated Beta Zeolite. Energy & Special Science (Special Catalytic Cracking of Heavy Oil over Silane-Treated Beta Zeolite.	2.5	5