Feng-Lei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390394/publications.pdf

Version: 2024-02-01

		279701	302012
54	1,670	23	39
papers	citations	h-index	g-index
56	56	56	1867
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Theranostics for MRIâ€guided therapy: Recent developments. View, 2022, 3, 20200134.	2.7	17
2	Melamineâ€Crosslinked Polyimide Aerogels from Supercritical Ethanol Drying with Improved Inâ€Use Shape Stability Against Shrinking. Macromolecular Materials and Engineering, 2022, 307, 2100645.	1.7	6
3	Polydopamine-coated nanocomposite theranostic implants for localized chemotherapy and MRI imaging. International Journal of Pharmaceutics, 2022, 615, 121493.	2.6	10
4	Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. Materials Science and Engineering C, 2022, , 112716 .	3.8	6
5	Fabrication of electrically conductive poly(styrene-b-ethylene-ran-butylene-b-styrene)/multi-walled carbon nanotubes composite fiber and its application in ultra-stretchable strain sensor. European Polymer Journal, 2022, 169, 111121.	2.6	13
6	A flexible strain sensor based on conductive <scp>TPU</scp> / <scp>CNTsâ€Gr</scp> composites. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
7	A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers. Composites Science and Technology, 2022, 224, 109478.	3.8	27
8	Electrospun PHB/Chitosan Composite Fibrous Membrane and Its Degradation Behaviours in Different pH Conditions. Journal of Functional Biomaterials, 2022, 13, 58.	1.8	8
9	Biodegradable Polyurethane Fiber-Based Strain Sensor with a Broad Sensing Range and High Sensitivity for Human Motion Monitoring. ACS Sustainable Chemistry and Engineering, 2022, 10, 8788-8798.	3.2	35
10	Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity. Nanomaterials, 2022, 12, 2458.	1.9	6
11	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	2.9	81
12	Developing and scaling up fast-dissolving electrospun formulations based on poly(vinylpyrrolidone) and ketoprofen. Journal of Drug Delivery Science and Technology, 2021, 61, 102138.	1.4	9
13	Innovations and advances in electrospraying technology. , 2021, , 207-228.		O
14	Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding. Journal of Materials Science, 2021, 56, 6499-6513.	1.7	33
15	Validating pore size estimates in a complex microfiber environment on a human MRI system. Magnetic Resonance in Medicine, 2021, 86, 1514-1530.	1.9	5
16	Coaxial electrospun biomimetic copolymer fibres for application in diffusion magnetic resonance imaging. Bioinspiration and Biomimetics, 2021, 16, 046016.	1.5	4
17	A Highly Stretchable and Sensitive Strain Sensor Based on Dopamine Modified Electrospun SEBS Fibers and MWCNTs with Carboxylation. Advanced Electronic Materials, 2021, 7, 2100233.	2.6	97
18	Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106461.	3.8	71

#	Article	IF	Citations
19	Flexible and Highly Conductive AgNWs/PEDOT:PSS Functionalized Aramid Nonwoven Fabric for Highâ€Performance Electromagnetic Interference Shielding and Joule Heating. Macromolecular Materials and Engineering, 2021, 306, 2100365.	1.7	18
20	Printable dielectric elastomers of high electromechanical properties based on SEBS ink incorporated with polyphenols modified dielectric particles. European Polymer Journal, 2021, 159, 110730.	2.6	14
21	Comparative analysis of signal models for microscopic fractional anisotropy estimation using q-space trajectory encoding. Neurolmage, 2021, 242, 118445.	2.1	6
22	Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Applied Surface Science, 2021, 566, 150705.	3.1	49
23	The 3D printing of dielectric elastomer films assisted by electrostatic force. Smart Materials and Structures, 2021, 30, 025001.	1.8	4
24	Highly Conductive Silver Nanoparticle-Functionalized Aramid Fiber Paper for Electrical Heaters with Rapid Response and Chemical Stability. Industrial & Engineering Chemistry Research, 2020, 59, 18898-18906.	1.8	10
25	Flexible and conductive meta-aramid fiber paper with high thermal and chemical stability for electromagnetic interference shielding. Applied Surface Science, 2020, 533, 147431.	3.1	53
26	Poly (m-phenylene isophthalamide)/graphene composite aerogels with enhanced compressive shape stability for thermal insulation. Journal of Sol-Gel Science and Technology, 2020, 96, 370-381.	1.1	3
27	Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. Journal of Materials Science, 2020, 55, 12592-12606.	1.7	39
28	Controllable Aligned Nanofiber Hybrid Yarns with Enhanced Bioproperties for Tissue Engineering. Macromolecular Materials and Engineering, 2019, 304, 1900089.	1.7	15
29	Co-electrospraying of tumour cell mimicking hollow polymeric microspheres for diffusion magnetic resonance imaging. Materials Science and Engineering C, 2019, 101, 217-227.	3.8	11
30	A biomimetic tumor tissue phantom for validating diffusionâ€weighted MRI measurements. Magnetic Resonance in Medicine, 2018, 80, 147-158.	1.9	12
31	Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. Materials and Design, 2018, 137, 394-403.	3.3	14
32	A facile method of preparing highly porous polylactide microfibers. Journal of Applied Polymer Science, 2018, 135, 45860.	1.3	4
33	Polylactide single-polymer composites with a wide melt-processing window based on core-sheath PLA fibers. Materials and Design, 2018, 139, 36-44.	3.3	21
34	Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences. Neurolmage, 2018, 181, 395-402.	2.1	9
35	Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying. Langmuir, 2017, 33, 13262-13271.	1.6	28
36	Biomimetic phantom for cardiac diffusion MRI. Journal of Magnetic Resonance Imaging, 2016, 43, spcone-spcone.	1.9	1

#	Article	IF	CITATIONS
37	Biomimetic phantom for cardiac diffusion MRI. Journal of Magnetic Resonance Imaging, 2016, 43, 594-600.	1.9	24
38	Preparation and characterization of polycaprolactone microspheres by electrospraying. Aerosol Science and Technology, 2016, 50, 1201-1215.	1.5	29
39	Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magnetic Resonance in Medicine, 2015, 73, 299-305.	1.9	57
40	Electrospun Sodium Alginate/Polyethylene Oxide Fibers and Nanocoated Yarns. International Journal of Polymer Science, 2015, 2015, 1-12.	1.2	33
41	Co-electrospun Brain Mimetic Hollow Microfibres Fibres for Diffusion Magnetic Resonance Imaging. Nanoscience and Technology, 2015, , 289-304.	1.5	2
42	Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies. Materials Characterization, 2015, 109, 25-35.	1.9	24
43	Ground Truth for Diffusion MRI in Cancer: A Model-Based Investigation of a Novel Tissue-Mimetic Material. Lecture Notes in Computer Science, 2015, 24, 179-190.	1.0	6
44	Diffusion tensor MRI phantom exhibits anomalous diffusion., 2014, 2014, 746-9.		9
45	The CONNECT project: Combining macro- and micro-structure. Neurolmage, 2013, 80, 273-282.	2.1	121
46	Coaxially Electrospun Axon-Mimicking Fibers for Diffusion Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6311-6316.	4.0	34
47	Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core–shell fibres. Polymer, 2011, 52, 3603-3610.	1.8	68
48	Needle and needleless electrospinning for nanofibers. Journal of Applied Polymer Science, 2010, 115, 2591-2598.	1.3	58
49	Nano-coated hybrid yarns using electrospinning. Surface and Coatings Technology, 2010, 204, 3459-3463.	2.2	48
50	Three-jet electrospinning using a flat spinneret. Journal of Materials Science, 2009, 44, 5501-5508.	1.7	53
51	Mass production of nanofibre assemblies by electrostatic spinning. Polymer International, 2009, 58, 331-342.	1.6	155
52	Polymeric nanofibers via flat spinneret electrospinning. Polymer Engineering and Science, 2009, 49, 2475-2481.	1.5	46
53	Nanocoating on filaments by electrospinning. Surface and Coatings Technology, 2009, 204, 621-628.	2.2	17
54	Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polymer International, 2008, 57, 837-845.	1.6	140