Feng-Lei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390394/publications.pdf

Version: 2024-02-01

1			279798	302126	
	54	1,670	23	39	
	papers	citations	h-index	g-index	
ĺ					
	56	56	56	1867	
	30	30	30	1007	
	all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Mass production of nanofibre assemblies by electrostatic spinning. Polymer International, 2009, 58, 331-342.	3.1	155
2	Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polymer International, 2008, 57, 837-845.	3.1	140
3	The CONNECT project: Combining macro- and micro-structure. Neurolmage, 2013, 80, 273-282.	4.2	121
4	A Highly Stretchable and Sensitive Strain Sensor Based on Dopamine Modified Electrospun SEBS Fibers and MWCNTs with Carboxylation. Advanced Electronic Materials, 2021, 7, 2100233.	5.1	97
5	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	5.8	81
6	Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106461.	7.6	71
7	Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core–shell fibres. Polymer, 2011, 52, 3603-3610.	3.8	68
8	Needle and needleless electrospinning for nanofibers. Journal of Applied Polymer Science, 2010, 115, 2591-2598.	2.6	58
9	Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magnetic Resonance in Medicine, 2015, 73, 299-305.	3.0	57
10	Three-jet electrospinning using a flat spinneret. Journal of Materials Science, 2009, 44, 5501-5508.	3.7	53
11	Flexible and conductive meta-aramid fiber paper with high thermal and chemical stability for electromagnetic interference shielding. Applied Surface Science, 2020, 533, 147431.	6.1	53
12	Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Applied Surface Science, 2021, 566, 150705.	6.1	49
13	Nano-coated hybrid yarns using electrospinning. Surface and Coatings Technology, 2010, 204, 3459-3463.	4.8	48
14	Polymeric nanofibers via flat spinneret electrospinning. Polymer Engineering and Science, 2009, 49, 2475-2481.	3.1	46
15	Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. Journal of Materials Science, 2020, 55, 12592-12606.	3.7	39
16	Biodegradable Polyurethane Fiber-Based Strain Sensor with a Broad Sensing Range and High Sensitivity for Human Motion Monitoring. ACS Sustainable Chemistry and Engineering, 2022, 10, 8788-8798.	6.7	35
17	Coaxially Electrospun Axon-Mimicking Fibers for Diffusion Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6311-6316.	8.0	34
18	Electrospun Sodium Alginate/Polyethylene Oxide Fibers and Nanocoated Yarns. International Journal of Polymer Science, 2015, 2015, 1-12.	2.7	33

#	Article	IF	Citations
19	Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding. Journal of Materials Science, 2021, 56, 6499-6513.	3.7	33
20	Preparation and characterization of polycaprolactone microspheres by electrospraying. Aerosol Science and Technology, 2016, 50, 1201-1215.	3.1	29
21	Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying. Langmuir, 2017, 33, 13262-13271.	3.5	28
22	A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers. Composites Science and Technology, 2022, 224, 109478.	7.8	27
23	Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies. Materials Characterization, 2015, 109, 25-35.	4.4	24
24	Biomimetic phantom for cardiac diffusion MRI. Journal of Magnetic Resonance Imaging, 2016, 43, 594-600.	3.4	24
25	Polylactide single-polymer composites with a wide melt-processing window based on core-sheath PLA fibers. Materials and Design, 2018, 139, 36-44.	7.0	21
26	Flexible and Highly Conductive AgNWs/PEDOT:PSS Functionalized Aramid Nonwoven Fabric for Highâ∈Performance Electromagnetic Interference Shielding and Joule Heating. Macromolecular Materials and Engineering, 2021, 306, 2100365.	3.6	18
27	Nanocoating on filaments by electrospinning. Surface and Coatings Technology, 2009, 204, 621-628.	4.8	17
28	Theranostics for MRIâ€guided therapy: Recent developments. View, 2022, 3, 20200134.	5.3	17
29	Controllable Aligned Nanofiber Hybrid Yarns with Enhanced Bioproperties for Tissue Engineering. Macromolecular Materials and Engineering, 2019, 304, 1900089.	3.6	15
30	Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. Materials and Design, 2018, 137, 394-403.	7.0	14
31	Printable dielectric elastomers of high electromechanical properties based on SEBS ink incorporated with polyphenols modified dielectric particles. European Polymer Journal, 2021, 159, 110730.	5.4	14
32	Fabrication of electrically conductive poly(styrene-b-ethylene-ran-butylene-b-styrene)/multi-walled carbon nanotubes composite fiber and its application in ultra-stretchable strain sensor. European Polymer Journal, 2022, 169, 111121.	5.4	13
33	A biomimetic tumor tissue phantom for validating diffusionâ€weighted MRI measurements. Magnetic Resonance in Medicine, 2018, 80, 147-158.	3.0	12
34	Co-electrospraying of tumour cell mimicking hollow polymeric microspheres for diffusion magnetic resonance imaging. Materials Science and Engineering C, 2019, 101, 217-227.	7.3	11
35	Highly Conductive Silver Nanoparticle-Functionalized Aramid Fiber Paper for Electrical Heaters with Rapid Response and Chemical Stability. Industrial & Engineering Chemistry Research, 2020, 59, 18898-18906.	3.7	10
36	Polydopamine-coated nanocomposite theranostic implants for localized chemotherapy and MRI imaging. International Journal of Pharmaceutics, 2022, 615, 121493.	5.2	10

#	Article	IF	CITATIONS
37	Diffusion tensor MRI phantom exhibits anomalous diffusion. , 2014, 2014, 746-9.		9
38	Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences. Neurolmage, 2018, 181, 395-402.	4.2	9
39	Developing and scaling up fast-dissolving electrospun formulations based on poly(vinylpyrrolidone) and ketoprofen. Journal of Drug Delivery Science and Technology, 2021, 61, 102138.	3.0	9
40	Electrospun PHB/Chitosan Composite Fibrous Membrane and Its Degradation Behaviours in Different pH Conditions. Journal of Functional Biomaterials, 2022, 13, 58.	4.4	8
41	A flexible strain sensor based on conductive <scp>TPU</scp> / <scp>CNTsâ€Gr</scp> composites. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
42	Comparative analysis of signal models for microscopic fractional anisotropy estimation using q-space trajectory encoding. Neurolmage, 2021, 242, 118445.	4.2	6
43	Ground Truth for Diffusion MRI in Cancer: A Model-Based Investigation of a Novel Tissue-Mimetic Material. Lecture Notes in Computer Science, 2015, 24, 179-190.	1.3	6
44	Melamineâ€Crosslinked Polyimide Aerogels from Supercritical Ethanol Drying with Improved Inâ€Use Shape Stability Against Shrinking. Macromolecular Materials and Engineering, 2022, 307, 2100645.	3.6	6
45	Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. Materials Science and Engineering C, 2022, , 112716.	7.3	6
46	Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity. Nanomaterials, 2022, 12, 2458.	4.1	6
47	Validating pore size estimates in a complex microfiber environment on a human MRI system. Magnetic Resonance in Medicine, 2021, 86, 1514-1530.	3.0	5
48	A facile method of preparing highly porous polylactide microfibers. Journal of Applied Polymer Science, 2018, 135, 45860.	2.6	4
49	Coaxial electrospun biomimetic copolymer fibres for application in diffusion magnetic resonance imaging. Bioinspiration and Biomimetics, 2021, 16, 046016.	2.9	4
50	The 3D printing of dielectric elastomer films assisted by electrostatic force. Smart Materials and Structures, 2021, 30, 025001.	3 . 5	4
51	Poly (m-phenylene isophthalamide)/graphene composite aerogels with enhanced compressive shape stability for thermal insulation. Journal of Sol-Gel Science and Technology, 2020, 96, 370-381.	2.4	3
52	Co-electrospun Brain Mimetic Hollow Microfibres Fibres for Diffusion Magnetic Resonance Imaging. Nanoscience and Technology, 2015, , 289-304.	1.5	2
53	Biomimetic phantom for cardiac diffusion MRI. Journal of Magnetic Resonance Imaging, 2016, 43, spcone-spcone.	3.4	1
54	Innovations and advances in electrospraying technology. , 2021, , 207-228.		0