Eva Malmström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390267/publications.pdf

Version: 2024-02-01

206 papers

12,536 citations

59 h-index

22099

101 g-index

208 all docs

208 docs citations

times ranked

208

9492 citing authors

#	Article	IF	CITATIONS
1	A fully bio-based wood adhesive valorising hemicellulose-rich sidestreams from the pulp industry. Green Chemistry, 2021, 23, 3322-3333.	4.6	31
2	Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance. Polymer Chemistry, 2021, 12, 6088-6100.	1.9	7
3	UV-Curable Bio-Based Polymers Derived from Industrial Pulp and Paper Processes. Polymers, 2021, 13, 1530.	2.0	25
4	Biobased Lactones—Exploring Their Free-Radical Polymerization and Polymer Properties. Macromolecules, 2021, 54, 6127-6134.	2.2	7
5	Moisture uptake in nanocellulose: the effects of relative humidity, temperature and degree of crystallinity. Cellulose, 2021, 28, 9007-9021.	2.4	19
6	Redispersion Strategies for Dried Cellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2021, 9, 11003-11010.	3.2	21
7	Grafting of poly(εâ€caprolactone) from Abaca cellulose fibers via <scp>ringâ€opening</scp> polymerization resulting in facile oneâ€pot biocomposites. SPE Polymers, 2021, 2, 297-310.	1.4	5
8	Modification of cellulose through physisorption of cationic bio-based nanolatexes – comparing emulsion polymerization and RAFT-mediated polymerization-induced self-assembly. Green Chemistry, 2021, 23, 2113-2122.	4.6	8
9	Functional Nanocarriers for Drug Delivery by Surface Engineering of Polymeric Nanoparticle Post-Polymerization-Induced Self-Assembly. ACS Applied Bio Materials, 2021, 4, 1045-1056.	2.3	15
10	Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. Jacs Au, 2021, 1, 1949-1960.	3.6	13
11	Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules, 2020, 21, 4479-4491.	2.6	11
12	Nanoparticle rearrangement under stress in networks of cellulose nanofibrils using in situ SAXS during tensile testing. Nanoscale, 2020, 12, 6462-6471.	2.8	9
13	Core–Shell Nanoparticle Interface and Wetting Properties. Advanced Functional Materials, 2020, 30, 1907720.	7.8	22
14	In Situ Encapsulation of Nile Red or Doxorubicin during RAFTâ€Mediated Emulsion Polymerization via Polymerizationâ€Induced Selfâ€Assembly for Biomedical Applications. Macromolecular Chemistry and Physics, 2020, 221, 1900443.	1.1	16
15	Lactone monomers obtained by enzyme catalysis and their use in reversible thermoresponsive networks. Journal of Applied Polymer Science, 2020, 137, 48949.	1.3	5
16	Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications. Polymers, 2019, 11, 740.	2.0	6
17	Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles. ACS Nano, 2019, 13, 6409-6420.	7.3	26
18	All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers. Biomacromolecules, 2019, 20, 1937-1943.	2.6	29

#	Article	IF	Citations
19	Chemo-enzymatic pathways toward pinene-based renewable materials. Green Chemistry, 2019, 21, 2720-2731.	4.6	37
20	A Retroâ€biosynthesisâ€Based Route to Generate Pineneâ€Derived Polyesters. ChemBioChem, 2019, 20, 1664-1671.	1.3	21
21	Enzymatically Synthesized Vinyl Ether-Disulfide Monomer Enabling an Orthogonal Combination of Free Radical and Cationic Chemistry toward Sustainable Functional Networks. Biomacromolecules, 2019, 20, 1308-1316.	2.6	9
22	Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale, 2019, 11, 4287-4302.	2.8	22
23	Itaconate based polyesters: Selectivity and performance of esterification catalysts. European Polymer Journal, 2018, 103, 370-377.	2.6	28
24	Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability. Carbohydrate Polymers, 2018, 181, 871-878.	5.1	33
25	One-pot preparation of bi-functional cellulose nanofibrils. Cellulose, 2018, 25, 7031-7042.	2.4	8
26	Tailoring Thermoâ€Mechanical Properties of Cationically UVâ€Cured Systems by a Rational Design of Vinyl Ether Ester Oligomers using Enzyme Catalysis. Macromolecular Chemistry and Physics, 2018, 219, 1800335.	1.1	2
27	Polymeric Nanoparticles Explored for Drug-Delivery Applications. ACS Symposium Series, 2018, , 315-331.	0.5	7
28	Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative. ACS Applied Nano Materials, 2018, 1, 2669-2677.	2.4	34
29	Green Binders for Wood Adhesives. , 2018, , .		21
30	Novel sustainable synthesis of vinyl ether ester building blocks, directly from carboxylic acids and the corresponding hydroxyl vinyl ether, and their photopolymerization. RSC Advances, 2018, 8, 24716-24723.	1.7	12
31	Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study. Polymer Chemistry, 2017, 8, 1061-1073.	1.9	36
32	Tailoring dielectric properties using designed polymer-grafted ZnO nanoparticles in silicone rubber. Journal of Materials Chemistry A, 2017, 5, 14241-14258.	5.2	35
33	Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35305-35318.	4.0	77
34	Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Advances, 2017, 7, 14947-14958.	1.7	16
35	Reduced and Surfaceâ€Modified Graphene Oxide with Nonlinear Resistivity. Macromolecular Rapid Communications, 2017, 38, 1700291.	2.0	14
36	Comparison of oil-impregnated papers with SiO <inf>2</inf> and ZnO nanoparticles or high lignin content, for the effect of superimposed impulse voltage on AC surface PD. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 1726-1734.	1.8	6

#	Article	IF	CITATIONS
37	Biobased UV-curable coatings based on itaconic acid. Journal of Coatings Technology Research, 2017, 14, 851-861.	1.2	37
38	SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polymer, 2016, 99, 240-249.	1.8	39
39	Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states. Nanoscale, 2016, 8, 14730-14745.	2.8	11
40	Copper-based dye-sensitized solar cells with quasi-solid nano cellulose composite electrolytes. RSC Advances, 2016, 6, 56571-56579.	1.7	16
41	Correction: Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states. Nanoscale, 2016, 8, 13522-13522.	2.8	0
42	Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Biomacromolecules, 2016, 17, 1414-1424.	2.6	43
43	Paperâ€sheet biocomposites based on wood pulp grafted with poly(εâ€caprolactone). Journal of Applied Polymer Science, 2015, 132, .	1.3	5
44	Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al ₂ O ₃ Nanoparticles in LDPE. ACS Applied Materials & Interfaces, 2015, 7, 25669-25678.	4.0	36
45	Toward industrial grafting of cellulosic substrates via <scp>ARGET ATRP</scp> . Journal of Applied Polymer Science, 2015, 132, .	1.3	21
46	Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer. Journal of Materials Chemistry B, 2015, 3, 2472-2486.	2.9	20
47	Tailor-made copolymers for the adsorption to cellulosic surfaces. European Polymer Journal, 2015, 65, 325-339.	2.6	42
48	Xylan – A green binder for wood adhesives. European Polymer Journal, 2015, 67, 483-493.	2.6	40
49	Disulfide-Functionalized Unimolecular Micelles as Selective Redox-Responsive Nanocarriers. Biomacromolecules, 2015, 16, 2872-2883.	2.6	26
50	Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of îµ-caprolactone. Cellulose, 2015, 22, 1063-1074.	2.4	18
51	Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Advances, 2015, 5, 77643-77650.	1.7	21
52	Cellulose grafting by photoinduced controlled radical polymerisation. Polymer Chemistry, 2015, 6, 1865-1874.	1.9	35
53	Preparation and characterization of functionalized cellulose nanocrystals. Carbohydrate Polymers, 2015, 115, 457-464.	5.1	121
54	Binder Materials for Green Propellants. , 2014, , 205-234.		3

#	Article	IF	CITATIONS
55	Polymer-grafted Al2O3-nanoparticles for controlled dispersion in poly(ethylene-co-butyl acrylate) nanocomposites. Polymer, 2014, 55, 2125-2138.	1.8	36
56	Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. Journal of Materials Chemistry A, 2014, 2, 13556.	5.2	66
57	Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL. RSC Advances, 2014, 4, 25809.	1.7	19
58	Toward Unimolecular Micelles with Tunable Dimensions Using Hyperbranched Dendritic-Linear Polymers. Biomacromolecules, 2014, 15, 2235-2245.	2.6	24
59	Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polymer Chemistry, 2014, 5, 6076-6086.	1.9	62
60	Gum dispersions as environmentally friendly wood adhesives. Industrial Crops and Products, 2014, 52, 736-744.	2.5	55
61	Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres. European Polymer Journal, 2013, 49, 1503-1509.	2.6	24
62	In Vitro Evaluation of Nonâ€Protein Adsorbing Breast Cancer Theranostics Based on 19 Fâ€Polymer Containing Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 381-390.	1.2	33
63	Plant proteins as wood adhesives: Bonding performance at the macro- and nanoscale. Industrial Crops and Products, 2013, 44, 246-252.	2.5	51
64	Characterization of hydrolyzed or heat treated wheat gluten by SE-HPLC and 13C NMR: Correlation with wood bonding performance. Industrial Crops and Products, 2013, 51, 51-61.	2.5	14
65	Nanobiocomposite Adhesion: Role of Graft Length and Temperature in a Hybrid Biomimetic Approach. Biomacromolecules, 2013, 14, 1003-1009.	2.6	11
66	Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research. Chemical Society Reviews, 2013, 42, 5858.	18.7	137
67	Grafting Efficiency of Synthetic Polymers onto Biomaterials: A Comparative Study of Grafting- <i>from</i> versus Grafting- <i>to</i> Biomacromolecules, 2013, 14, 64-74.	2.6	137
68	Drug Delivery: In Vitro Evaluation of Non-Protein Adsorbing Breast Cancer Theranostics Based on 19 F-Polymer Containing Nanoparticles (Part. Part. Syst. Charact. 4/2013). Particle and Particle Systems Characterization, 2013, 30, 300-300.	1.2	0
69	Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance. Soft Matter, 2012, 8, 512-517.	1.2	28
70	Grafting of cellulose by ring-opening polymerisation – A review. European Polymer Journal, 2012, 48, 1646-1659.	2.6	229
71	Synthesis, adsorption and adhesive properties of a cationic amphiphilic block copolymer for use as compatibilizer in composites. European Polymer Journal, 2012, 48, 1195-1204.	2.6	20
72	Dendrimers. , 2012, , 113-176.		15

#	Article	IF	Citations
73	Surface-initiated ring-opening metathesis polymerisation from cellulose fibres. Polymer Chemistry, 2012, 3, 727.	1.9	34
74	Facile Preparation Route for Nanostructured Composites: Surface-Initiated Ring-Opening Polymerization of Îμ-Caprolactone from High-Surface-Area Nanopaper. ACS Applied Materials & Interfaces, 2012, 4, 3191-3198.	4.0	40
75	Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6796-6807.	4.0	29
76	Visualization of poly(methyl methacrylate) (PMMA) grafts on cellulose via high-resolution FT-IR microscopy imaging. Polymer Chemistry, 2012, 3, 307-309.	1.9	22
77	Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard. Polymer Chemistry, 2012, 3, 1702-1713.	1.9	123
78	Adhesive properties of wheat gluten after enzymatic hydrolysis or heat treatment – A comparative study. Industrial Crops and Products, 2012, 38, 139-145.	2.5	35
79	Wheat gluten fractions as wood adhesives—glutenins versus gliadins. Journal of Applied Polymer Science, 2012, 123, 1530-1538.	1.3	48
80	Thermo-responsive cellulose-based architectures: tailoring LCST using poly(ethylene glycol) methacrylates. Polymer Chemistry, 2011, 2, 1114-1123.	1.9	80
81	Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites–Influence of the Graft Length on the Mechanical Properties. ACS Applied Materials & Interfaces, 2011, 3, 1426-1433.	4.0	134
82	Selective cleavage of polymer grafts from solid surfaces: assessment of initiator content and polymer characteristics. Polymer Chemistry, 2011, 2, 556-558.	1.9	33
83	Hybrid Rigid/Soft and Biologic/Synthetic Materials: Polymers Grafted onto Cellulose Microcrystals. Biomacromolecules, 2011, 12, 1214-1223.	2.6	64
84	One-pot enzymatic polycondensation to telechelic methacrylate-functional oligoesters used for film formation. Polymer Chemistry, 2011, 2, 714-719.	1.9	23
85	Investigation of iron complexes in ATRP: Indications of different iron species in normal and reverse ATRP. Journal of Molecular Catalysis A, 2011, 346, 20-28.	4.8	6
86	Bifunctional Dendronized Cellulose Surfaces as Biosensors. Biomacromolecules, 2011, 12, 2114-2125.	2.6	59
87	Surfaceâ€Grafted conjugated polymers for hybrid cellulose materials. Journal of Polymer Science Part A, 2011, 49, 3004-3013.	2.5	20
88	Predicting the Limit of Control in the ATRP Process: Results from Kinetic Simulations. Macromolecular Theory and Simulations, 2011, 20, 814-825.	0.6	11
89	Increased onset temperature of expansion in thermally expandable microspheres through combination of crosslinking agents. Journal of Applied Polymer Science, 2011, 121, 369-375.	1.3	23
90	Design of an ammonium dinitramide compatible polymer matrix. Journal of Applied Polymer Science, 2011, 122, 1-11.	1.3	21

#	Article	IF	CITATIONS
91	Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(ε-caprolactone) bilayer laminate. Composites Science and Technology, 2011, 71, 9-12.	3.8	41
92	Thiol–ene networks and reactive surfaces via photoinduced polymerization of allyl ether functional hyperbranched polymers. Progress in Organic Coatings, 2010, 67, 348-355.	1.9	18
93	Thiol–ene networks and reactive surfaces via photoinduced polymerization of allyl ether functional hyperbranched polymers. Progress in Organic Coatings, 2010, 68, 151-158.	1.9	16
94	Thermally expandable microspheres with excellent expansion characteristics at high temperature. Journal of Applied Polymer Science, 2010, 117, 384-392.	1.3	44
95	Influence of crosslinking on the characteristics of thermally expandable microspheres expanding at high temperature. Journal of Applied Polymer Science, 2010, 118, 1219-1229.	1.3	14
96	Comparing bond strength and water resistance of alkali-modified soy protein isolate and wheat gluten adhesives. International Journal of Adhesion and Adhesives, 2010, 30, 72-79.	1.4	79
97	Oneâ€pot enzymatic route to tetraallyl ether functional oligoesters: Synthesis, UV curing, and characterization. Journal of Polymer Science Part A, 2010, 48, 5289-5297.	2.5	14
98	Biomimetic Surface Modification of Honeycomb Films via a "Grafting From―Approach. Langmuir, 2010, 26, 12748-12754.	1.6	35
99	Thermoresponsive nanocomposites from multilayers of nanofibrillated cellulose and specially designed N-isopropylacrylamide based polymers. Soft Matter, 2010, 6, 342-352.	1.2	46
100	Hard and Flexible Nanocomposite Coatings using Nanoclay-Filled Hyperbranched Polymers. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1679-1684.	4.0	61
101	Pushing the Limits for Thiolâ^'Ene and CuAAC Reactions: Synthesis of a 6th Generation Dendrimer in a Single Day. Macromolecules, 2010, 43, 6625-6631.	2.2	158
102	Dendrimers in thiolâ€ene crosslinked networks and the effect of subsequent generations on thermoset properties. Journal of Polymer Science Part A, 2009, 47, 589-601.	2.5	29
103	Methacrylated dendrimers in thiolâ€methacrylate networks and the effect of conversion on the thermoset properties. Journal of Polymer Science Part A, 2009, 47, 5815-5826.	2.5	15
104	Triâ€block copolymers of polyethylene glycol and hyperbranched polyâ€3â€ethylâ€3â€(hydroxymethyl)oxetane through cationic ring opening polymerization. Journal of Polymer Science Part A, 2009, 47, 6191-6200.	2.5	27
105	Heterogeneous iron(II)-chloride mediated radical polymerization of styrene. Journal of Molecular Catalysis A, 2009, 306, 69-76.	4.8	16
106	Surface modification of thermally expandable microspheres by grafting poly(glycidyl methacrylate) using ARGET ATRP. European Polymer Journal, 2009, 45, 2374-2382.	2.6	70
107	Enzymatic One-Pot Route to Telechelic Polypentadecalactone Epoxide: Synthesis, UV Curing, and Characterization. Biomacromolecules, 2009, 10, 3108-3113.	2.6	38
108	Solvent Effects on ATRP of Oligo(ethylene glycol) Methacrylate. Exploring the Limits of Control. Macromolecules, 2009, 42, 3302-3308.	2.2	47

#	Article	IF	CITATIONS
109	Design of near-infrared dyes for nonlinear optics: toward optical limiting applications at telecommunication wavelengths. Proceedings of SPIE, 2009, , .	0.8	3
110	ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2651-2659.	4.0	149
111	Superhydrophobic and Self-Cleaning Bio-Fiber Surfaces via ATRP and Subsequent Postfunctionalization. ACS Applied Materials & Samp; Interfaces, 2009, 1, 816-823.	4.0	120
112	Adhesion Dynamics for Cellulose Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2098-2103.	4.0	30
113	Dendron-decorated cyanine dyes for optical limiting applications in the range of telecommunication wavelengths. New Journal of Chemistry, 2009, 33, 964.	1.4	18
114	Synthesis and thiol–ene photopolymerization of allylâ€ether functionalized dendrimers. Journal of Polymer Science Part A, 2008, 46, 1339-1348.	2.5	57
115	Efficient Nonlinear Absorbing Platinum(II) Acetylide Chromophores in Solid PMMA Matrices. Advanced Functional Materials, 2008, 18, 1939-1948.	7.8	51
116	Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. Journal of Colloid and Interface Science, 2008, 317, 556-567.	5.0	49
117	Surface grafting of microfibrillated cellulose with poly(ε-caprolactone) – Synthesis and characterization. European Polymer Journal, 2008, 44, 2991-2997.	2.6	182
118	Synthesis of in vitro non-toxic 2,2-bis(methylol)propionic acid (Bis-MPA) dendrimers. European Journal of Pharmaceutical Sciences, 2008, 34, S36.	1.9	2
119	Intelligent Dual-Responsive Cellulose Surfaces via Surface-Initiated ATRP. Biomacromolecules, 2008, 9, 2139-2145.	2.6	140
120	Unimolecular Nanocontainers Prepared by ROP and Subsequent ATRP from Hydroxypropylcellulose. Macromolecules, 2008, 41, 4405-4415.	2.2	55
121	Thiol-Functionalized Poly(ω-pentadecalactone) Telechelics for Semicrystalline Polymer Networks. Macromolecules, 2008, 41, 3613-3619.	2.2	51
122	Click chemistry for photonic applications: triazole-functionalized platinum(ii) acetylides for optical power limiting. Journal of Materials Chemistry, 2008, 18, 166-175.	6.7	64
123	Lipase Catalyzed HEMA Initiated Ring-Opening Polymerization: In Situ Formation of Mixed Polyester Methacrylates by Transesterification. Biomacromolecules, 2008, 9, 704-710.	2.6	49
124	Comb Polymers Prepared by ATRP from Hydroxypropyl Cellulose. Biomacromolecules, 2007, 8, 1138-1148.	2.6	104
125	Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Matter, 2007, 3, 866-871.	1.2	42
126	Dendronized Hydroxypropyl Cellulose: Synthesis and Characterization of Biobased Nanoobjects. Biomacromolecules, 2007, 8, 3815-3822.	2.6	23

#	Article	IF	Citations
127	Electronic states and phosphorescence of dendron functionalized platinum(II) acetylides. Journal of Luminescence, 2007, 124, 302-310.	1.5	45
128	Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chemical Communications, 2006, , 3594-3596.	2.2	142
129	Grafting of Cellulose Fibers with Poly($\hat{l}\mu$ -caprolactone) and Poly(I-lactic acid) via Ring-Opening Polymerization. Biomacromolecules, 2006, 7, 2178-2185.	2.6	199
130	Dendron Decorated Platinum(II) Acetylides for Optical Power Limiting. Macromolecules, 2006, 39, 2238-2246.	2.2	107
131	Characterization of Poly(norbornene) Dendronized Polymers Prepared by Ring-Opening Metathesis Polymerization of Dendron Bearing Monomers. Macromolecules, 2006, 39, 7241-7249.	2.2	58
132	Solvent Effects on the Redox Properties of Cu Complexes Used as Mediators in Atom Transfer Radical Polymerization. Journal of Physical Chemistry A, 2006, 110, 10355-10360.	1.1	22
133	Novel polymers with a high carboxylic acid loading. Journal of Polymer Science Part A, 2006, 44, 6360-6377.	2.5	32
134	Suspension polymerization of thermally expandable core/shell particles. Polymer, 2006, 47, 3315-3324.	1.8	95
135	A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes. Solid State Ionics, 2006, 177, 787-794.	1.3	28
136	UV-curable hyperbranched nanocomposite coatings. Progress in Organic Coatings, 2006, 55, 284-290.	1.9	42
137	Surface modification of natural substrates by atom transfer radical polymerization. Journal of Applied Polymer Science, 2006, 100, 4155-4162.	1.3	96
138	One-Pot Difunctionalization of Poly (i‰-pentadecalactone) with Thiol-Thiol or Thiol-Acrylate Groups, Catalyzed by Candida antarctica Lipase B. Macromolecular Rapid Communications, 2006, 27, 1932-1936.	2.0	52
139	Multi-functionalized platinum(II) acetylides for optical power limiting. , 2006, , .		3
140	Hybrid materials for optical limiting applications. , 2006, 6401, 67.		1
141	Dendrimers as Scaffolds for Reversible Addition Fragmentation Chain Transfer (RAFT) Agents: a Route to Star-Shaped Block Copolymers. Australian Journal of Chemistry, 2005, 58, 483.	0.5	32
142	Highly-Ordered Hybrid Organic-Inorganic Isoporous Membranes from Polymer Modified Nanoparticles. Macromolecular Rapid Communications, 2005, 26, 524-528.	2.0	27
143	Thiophene-cored 2,2-bis(methylol)propionic acid dendrimers for optical-power-limiting applications. Journal of Polymer Science Part A, 2005, 43, 1177-1187.	2.5	27
144	Bulk properties of dendronized polymers with tailored end-groups emanating from the same backbone. Journal of Polymer Science Part A, 2005, 43, 4496-4504.	2.5	21

#	Article	IF	CITATIONS
145	Thiol End-Functionalization of Poly($\hat{l}\mu$ -caprolactone), Catalyzed by Candida antarctica Lipase B. Macromolecules, 2005, 38, 647-649.	2.2	98
146	Use of Xyloglucan as a Molecular Anchor for the Elaboration of Polymers from Cellulose Surfaces:Â A General Route for the Design of Biocomposites. Macromolecules, 2005, 38, 3547-3549.	2.2	74
147	Dendritic Structures Based on Bis(hydroxymethyl)propionic Acid as Platforms for Surface Reactions. Langmuir, 2005, 21, 4512-4519.	1.6	19
148	Semi-crystalline thermoset resins: tailoring rheological properties in melt using comb structures with crystalline grafts. Progress in Organic Coatings, 2004, 49, 13-22.	1.9	12
149	Synthesis and characterization of 2,2-bis(methylol)propionic acid dendrimers with different cores and terminal groups. Journal of Polymer Science Part A, 2004, 42, 1758-1767.	2.5	24
150	Dendrimers as scaffolds for multifunctional reversible addition-fragmentation chain transfer agents: Syntheses and polymerization. Journal of Polymer Science Part A, 2004, 42, 5877-5890.	2.5	105
151	Crystal structure, melting behaviour and equilibrium melting point of star polyesters with crystallisable poly(ε-caprolactone) arms. Polymer, 2004, 45, 5251-5263.	1.8	83
152	Crystallization Behavior and Morphology of Star Polyesters with Poly(ϵâ€Caprolactone) Arms. Journal of Macromolecular Science - Physics, 2004, 43, 1143-1160.	0.4	24
153	Dendronized Aliphatic Polymers by a Combination of ATRP and Divergent Growth. Macromolecules, 2004, 37, 322-329.	2.2	69
154	ATRP of Dendronized Aliphatic Macromonomers of Generation One, Two, and Three. Macromolecules, 2004, 37, 7491-7496.	2.2	32
155	Understanding Copper-Based Atom-Transfer Radical Polymerization in Aqueous Media. Journal of Physical Chemistry A, 2004, 108, 7129-7131.	1.1	46
156	Porphyrin-Cored 2,2-Bis(methylol)propionic Acid Dendrimers. Chemistry of Materials, 2004, 16, 2794-2804.	3.2	54
157	Design of coating resins by changing the macromolecular architecture: solid and liquid coating systems. Progress in Organic Coatings, 2003, 48, 194-200.	1.9	56
158	Insights into ToF-SIMS analysis of dendritic macromolecules: cationization and PCA to probe their molecular weight on surfaces. Applied Surface Science, 2003, 203-204, 620-624.	3.1	7
159	Fluorinated dendritic polymers and dendrimers for waveguide applications. Optical Materials, 2003, 21, 499-506.	1.7	43
160	Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents: A route to polystyrene-core -polyesters and polystyrene-block -poly(butyl) Tj ETQq0 0 0 rgE	BT 20 sverlo	ck 11304Tf 50 13
161	ToF-SIMS for the characterization of hyperbranched aliphatic polyesters: probing their molecular weight on surfaces based on principal component analysis (PCA). Surface and Interface Analysis, 2003, 35, 693-708.	0.8	22
162	ATRP Grafting from Cellulose Fibers to Create Block-Copolymer Grafts. Biomacromolecules, 2003, 4, 1740-1745.	2.6	269

#	Article	IF	Citations
163	Dendritic Polyesters for Optical Applications. , 2003, , 169-176.		1
164	Rapid and Efficient Synthesis of Aliphatic Ester Dendrons and Dendrimers. Macromolecules, 2002, 35, 8307-8314.	2.2	162
165	Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature. Journal of the American Chemical Society, 2002, 124, 900-901.	6.6	309
166	The Effect of Macromolecular Architecture in Nanomaterials:Â A Comparison of Site Isolation in Porphyrin Core Dendrimers and Their Isomeric Linear Analogues. Journal of the American Chemical Society, 2002, 124, 3926-3938.	6.6	149
167	Dendritic Oxazoline Ligands in Enantioselective Palladium-Catalyzed Allylic Alkylations. Journal of Organic Chemistry, 2002, 67, 8197-8202.	1.7	25
168	Chiral dendritic polymers for photonic applications. Synthetic Metals, 2002, 127, 37-43.	2.1	12
169	Rheological behaviour during UV-curing of a star-branched polyester. Progress in Organic Coatings, 2002, 44, 63-67.	1.9	43
170	Immobilized oxazoline-containing Ligands in asymmetric catalysis—a review. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1857-1861.	1.0	35
171	The effect of degree of branching on the rheological and thermal properties of hyperbranched aliphatic polyethers. Polymer, 2002, 43, 301-306.	1.8	92
172	Synthesis and characterisation of star branched polyesters with dendritic cores and the effect of structural variations on zero shear rate viscosity. Polymer, 2002, 43, 3511-3518.	1.8	95
173	Influence of Reaction Conditions on Degree of Branching in Hyperbranched Aliphatic Polyethers from 3-Ethyl-3-(hydroxymethyl)oxetane. Macromolecules, 2001, 34, 5786-5791.	2.2	67
174	Hyperbranched Macromolecules: Polymerization and Properties., 2001,, 3992-3997.		0
175	Barrier coatings for flexible packaging based on hyperbranched resins. Polymer, 2001, 42, 7403-7410.	1.8	65
176	Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid. Polymer, 2000, 41, 7705-7713.	1.8	111
177	Transport properties of hyperbranched and dendrimer-like star polymers. Polymer, 2000, 41, 1827-1840.	1.8	49
178	Novel concept for low temperature curing powder coatings based on hyperbranched polyesters. Journal of Coatings Technology, 2000, 72, 49-54.	0.7	65
179	Structure Buildup in Hyperbranched Polymers from 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules, 2000, 33, 3099-3104.	2.2	108

Stability and Molecular Conformation of Poly(benzyl ether) Monodendrons with Oligo(ethylene) Tj ETQq0 0 0 rgBT Qverlock 10 Tf 50 6

#	Article	IF	CITATIONS
181	Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecular Rapid Communications, 1999, 20, 453-457.	2.0	143
182	A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends. Journal of Rheology, 1999, 43, 781-793.	1.3	113
183	Adaptation of Bulk Constitutive Equations to Insoluble Monolayer Collapse at the Air-Water Interface. Science, 1999, 283, 1730-1733.	6.0	25
184	Hyperbranched Polymers. , 1999, , 1-34.		350
185	Controlled Synthesis of Polymer Brushes by "Living―Free Radical Polymerization Techniques. Macromolecules, 1999, 32, 1424-1431.	2.2	888
186	Simultaneous Dual Living Polymerizations: A Novel One-Step Approach to Block and Graft Copolymers. Angewandte Chemie - International Edition, 1998, 37, 1274-1276.	7.2	205
187	Synthesis of Poly(olefin) Graft Copolymers by a Combination of Metallocene and "Living―Free Radical Polymerization Techniques. Macromolecules, 1998, 31, 4396-4398.	2.2	127
188	Vaporâ^'Liquid Equilibria for Solutions of Dendritic Polymers. Journal of Chemical & Engineering Data, 1998, 43, 541-550.	1.0	37
189	Dual Living Free Radical and Ring Opening Polymerizations from a Double-Headed Initiator. Macromolecules, 1998, 31, 213-219.	2.2	197
190	Synthesis of a Poly(\hat{l}_{μ} -caprolactone) Monosubstituted First Generation Dendrimer by Lipase Catalysis. Journal of the American Chemical Society, 1998, 120, 13521-13522.	6.6	71
191	The Effect of Macromolecular Architecture on the Thin Film Aqueous Base Dissolution of Phenolic Polymers for Microlithography. ACS Symposium Series, 1998, , 360-370.	0.5	4
192	Macromolecular engineering via †living†free radical polymerizations. Macromolecular Chemistry and Physics, 1998, 199, 923-935.	1.1	94
193	Exact Linear Analogs of Dendritic Polyether Macromolecules:Â Design, Synthesis, and Unique Properties. Journal of the American Chemical Society, 1997, 119, 9903-9904.	6.6	200
194	Hyperbranched Polymers:. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1997, 37, 555-579.	2.2	192
195	"Living―Free-Radical Polymerizations in the Absence of Initiators: Controlled Autopolymerization. Macromolecules, 1997, 30, 1929-1934.	2.2	122
196	Development of a new class of rate-accelerating additives for nitroxide-mediated â€~living' free radical polymerization. Tetrahedron, 1997, 53, 15225-15236.	1.0	106
197	Relaxation processes in hyperbranched polyesters: influence of terminal groups. Polymer, 1997, 38, 4873-4879.	1.8	84
198	Kinetics of Formation of Hyperbranched Polyesters Based on 2,2-Bis(methylol)propionic Acid. Macromolecules, 1996, 29, 1222-1228.	2.2	118

#	Article	IF	CITATIONS
199	The effect of terminal alkyl chains on hyperbranched polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromolecular Chemistry and Physics, 1996, 197, 3199-3207.	1.1	97
200	Dendrimers and hyperbranched aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid (Bis-MPA). Advances in Dendritic Macromolecules, 1996, , 1-25.	0.6	15
201	Mechanisms of radiation induced cationic polymerization in the presence of onium salts. Nuclear Instruments & Methods in Physics Research B, 1995, 105, 168-174.	0.6	3
202	Dendritic resins for coating applications. Macromolecular Symposia, 1995, 98, 1159-1161.	0.4	43
203	Hyperbranched Aliphatic Polyesters. Macromolecules, 1995, 28, 1698-1703.	2.2	489
204	Relaxation processes in hyperbranched polyesters. Polymer Bulletin, 1994, 32, 679-685.	1.7	58
205	Synthesis, characterization, and curing of hyperbranched allyl ether–maleate functional ester resins. Journal of Polymer Science Part A, 1993, 31, 619-624.	2.5	134
206	Tunable Adhesion and Interfacial Structure of Layerâ€byâ€Layer Assembled Block coâ€polymer Micelle and Polyelectrolyte Coatings. Advanced Materials Interfaces, 0, , 2200065.	1.9	3