
Günther Gerisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science, 2002, 298, 1209-1213.	6.0	782
2	Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science, 2004, 306, 1387-1390.	6.0	451
3	Coronin involved in phagocytosis: Dynamics of particle-induced relocalization visualized by a green fluorescent protein tag. Cell, 1995, 83, 915-924.	13.5	341
4	Membrane-Bound Cyclic AMP Phosphodiesterase in Chemotactically Responding Cells of Dictyostelium discoideum. FEBS Journal, 1972, 28, 136-142.	0.2	274
5	Dynamic Actin Patterns and Arp2/3 Assembly at the Substrate-Attached Surface of Motile Cells. Current Biology, 2004, 14, 1-10.	1.8	256
6	Microfilament dynamics during cell movement and chemotaxis monitored using a GFP–actin fusion protein. Current Biology, 1997, 7, 176-183.	1.8	238
7	Membrane Bending Modulus and Adhesion Energy of Wild-Type and Mutant Cells of Dictyostelium Lacking Talin or Cortexillins. Biophysical Journal, 1998, 74, 514-522.	0.2	226
8	The Three-Dimensional Dynamics of Actin Waves, a Model of Cytoskeletal Self-Organization. Biophysical Journal, 2009, 96, 2888-2900.	0.2	182
9	Mobile Actin Clusters and Traveling Waves in Cells Recovering from Actin Depolymerization. Biophysical Journal, 2004, 87, 3493-3503.	0.2	179
10	Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature, 2002, 418, 79-85.	13.7	176
11	Cortexillins, Major Determinants of Cell Shape and Size, Are Actin-Bundling Proteins with a Parallel Coiled-Coil Tail. Cell, 1996, 86, 631-642.	13.5	172
12	A role for myosin VII in dynamic cell adhesion. Current Biology, 2001, 11, 318-329.	1.8	161
13	Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein–coronin fusion protein. Current Biology, 1995, 5, 1280-1285.	1.8	156
14	Organization of Actin Networks in Intact Filopodia. Current Biology, 2007, 17, 79-84.	1.8	151
15	Talin-Null Cells of Dictyostelium Are Strongly Defective in Adhesion to Particle and Substrate Surfaces and Slightly Impaired in Cytokinesis. Journal of Cell Biology, 1997, 138, 349-361.	2.3	136
16	A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics inDictyostelium. FEBS Letters, 2004, 577, 227-232.	1.3	135
17	Dynamics of theDictyosteliumArp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cytoskeleton, 2001, 50, 115-128.	4.4	126
18	G Protein β Subunit–null Mutants Are Impaired in Phagocytosis and Chemotaxis Due to Inappropriate Regulation of the Actin Cytoskeleton. Journal of Cell Biology, 1998, 141, 1529-1537.	2.3	113

GüNTHER GERISCH

#	Article	IF	CITATIONS
19	Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. Journal of Cell Science, 2002, 115, 2893-905.	1.2	105
20	Subsecond reorganization of the actin network in cell motility and chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7601-7606.	3.3	104
21	Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. Journal of Cell Science, 2014, 127, 4507-17.	1.2	83
22	PIP3 Waves and PTEN Dynamics in the Emergence of Cell Polarity. Biophysical Journal, 2012, 103, 1170-1178.	0.2	76
23	Reversal of Cell Polarity and Actin-Myosin Cytoskeleton Reorganization under Mechanical and Chemical Stimulation. Biophysical Journal, 2008, 94, 1063-1074.	0.2	69
24	Three-dimensional Patterns and Redistribution of Myosin II and Actin in Mitotic Dictyostelium Cells. Journal of Cell Biology, 1997, 139, 1793-1804.	2.3	68
25	Self-organizing actin waves as planar phagocytic cup structures. Cell Adhesion and Migration, 2009, 3, 373-382.	1.1	68
26	Curvature recognition and force generation in phagocytosis. BMC Biology, 2010, 8, 154.	1.7	62
27	Cytokinesis without myosin II. Current Opinion in Cell Biology, 2000, 12, 126-132.	2.6	59
28	Propagating waves separate two states of actin organization in living cells. HFSP Journal, 2009, 3, 412-427.	2.5	57
29	TUBULAR-VESICULAR TRANSFORMATION IN THE CONTRACTILE VACUOLE SYSTEM OF DICTYOSTELIUM. Cell Biology International, 2002, 26, 845-852.	1.4	53
30	A Lim protein involved in the progression of cytokinesis and regulation of the mitotic spindle. Cytoskeleton, 2003, 56, 130-139.	4.4	53
31	The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography. Structure, 2019, 27, 1211-1223.e5.	1.6	53
32	Actin Organization in Cells Responding to a Perforated Surface, Revealed by Live Imaging and Cryo-Electron Tomography. Structure, 2016, 24, 1031-1043.	1.6	50
33	Self-organizing actin waves that simulate phagocytic cup structures. PMC Biophysics, 2010, 3, 7.	2.2	48
34	Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system. BMC Cell Biology, 2011, 12, 42.	3.0	47
35	Retrieval of the Vacuolar H+-ATPase from Phagosomes Revealed by Live Cell Imaging. PLoS ONE, 2010, 5, e8585.	1.1	44
36	Dynamic organization of the actin system in the motile cells of Dictyostelium. Journal of Muscle Research and Cell Motility, 2002, 23, 639-649.	0.9	42

3

GüNTHER GERISCH

#	Article	IF	CITATIONS
37	Golvesin-GFP fusions as distinct markers for Golgi and post-Golgi vesicles in Dictyostelium cells. Biology of the Cell, 2000, 92, 495-511.	0.7	41
38	Endosome Fusion and Microtubule-Based Dynamics in the Early Endocytic Pathway ofDictyostelium. Traffic, 2002, 3, 791-800.	1.3	33
39	Mechanically Induced Actin-mediated Rocketing of Phagosomes. Molecular Biology of the Cell, 2006, 17, 4866-4875.	0.9	32
40	Two-step positioning of a cleavage furrow by cortexillin and myosin II. Current Biology, 2000, 10, 501-506.	1.8	31
41	Time-resolved responses to chemoattractant, characteristic of the front and tail ofDictyosteliumcells. FEBS Letters, 2006, 580, 6707-6713.	1.3	30
42	Membrane and actin reorganization in electropulse-induced cell fusion. Journal of Cell Science, 2013, 126, 2069-78.	1.2	30
43	Genetic evidence for concerted control of actin dynamics in cytokinesis, endocytic traffic, and cell motility by coronin and Aip1. Cytoskeleton, 2010, 67, 442-455.	1.0	27
44	Reversible Membrane Pearling in Live Cells upon Destruction of the ActinÂCortex. Biophysical Journal, 2014, 106, 1079-1091.	0.2	27
45	Actin-cytoskeleton dynamics in non-monotonic cell spreading. Cell Adhesion and Migration, 2008, 2, 58-68.	1.1	26
46	[15] GFP-Fusion proteins as fluorescent reporters to study organelle and cytoskeleton dynamics in chemotaxis and phagocytosis. Methods in Enzymology, 2003, 361, 320-337.	0.4	24
47	Actin-binding proteins required for reliable chromosome segregation in mitosis. Cytoskeleton, 2004, 57, 18-25.	4.4	21
48	A talin fragment as an actin trap visualizing actin flow in chemotaxis, endocytosis, and cytokinesis. Cytoskeleton, 2002, 53, 136-149.	4.4	19
49	The STE group kinase SepA controls cleavage furrow formation in Dictyostelium. Cytoskeleton, 2009, 66, 929-939.	4.4	15
50	Local Ras activation, PTEN pattern, and global actin flow in the chemotactic responses of over-sized cells. Journal of Cell Science, 2016, 129, 3462-72.	1.2	15
51	GFP-golvesin constructs to study Golgi tubulation and post-Golgi vesicle dynamics in phagocytosis. European Journal of Cell Biology, 2004, 83, 297-303.	1.6	12
52	Formins specify membrane patterns generated by propagating actin waves. Molecular Biology of the Cell, 2020, 31, 373-385.	0.9	12
53	Oscillatory Switches of Dorso-Ventral Polarity in Cells Confined between Two Surfaces. Biophysical Journal, 2018, 115, 150-162.	0.2	11
54	Co-existence of Ras activation in a chemotactic signal transduction pathway and in an autonomous wave - forming system. Small GTPases, 2019, 10, 72-80.	0.7	11

GüNTHER GERISCH

#	Article	IF	CITATIONS
55	Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals. Methods in Molecular Biology, 2016, 1407, 79-96.	0.4	8
56	Unilateral Cleavage Furrows in Multinucleate Cells. Cells, 2020, 9, 1493.	1.8	8
57	Imaging Actin Cytoskeleton Dynamics in Dictyostelium Chemotaxis. Methods in Molecular Biology, 2009, 571, 385-400.	0.4	8
58	Actin switches in phagocytosis. Communicative and Integrative Biology, 2011, 4, 344-345.	0.6	7
59	Toward the Structure of Dynamic Membrane-Anchored Actin Networks. Cell Adhesion and Migration, 2007, 1, 145-148.	1.1	6
60	Patterning of the cell cortex and the localization of cleavage furrows in multi-nucleate cells. Journal of Cell Science, 2022, 135, .	1.2	4
61	Phase Contrast Cryo-Electron Tomography and Single Particle Analysis with a New Phase Plate. Microscopy and Microanalysis, 2014, 20, 232-233.	0.2	1
62	Genetic Instability Due to Spindle Anomalies Visualized in Mutants of Dictyostelium. Cells, 2021, 10, 2240.	1.8	1
63	Decision Making in Phagocytosis. Advances in Experimental Medicine and Biology, 2020, 1246, 71-81.	0.8	0