

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390175/publications.pdf Version: 2024-02-01

Μλυρο ΕÃ

#	Article	IF	CITATIONS
1	Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Molecular Neurodegeneration, 2019, 14, 26.	4.4	59
2	Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. Journal of Alzheimer's Disease, 2018, 64, S611-S631.	1.2	102
3	LTP and memory impairment caused by extracellular AÎ ² and Tau oligomers is APP-dependent. ELife, 2017, 6,	2.8	121
4	Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer's disease. Scientific Reports, 2016, 6, 32553.	1.6	54
5	Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory. Scientific Reports, 2016, 6, 19393.	1.6	212
6	Novel Selective Calpain 1 Inhibitors as Potential Therapeutics in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 49, 707-721.	1.2	24
7	Stereotaxic Infusion of Oligomeric Amyloid-beta into the Mouse Hippocampus. Journal of Visualized Experiments, 2015, , e52805.	0.2	21
8	Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABAA potentiating activity for use in dementia. BMC Neuroscience, 2015, 16, 67.	0.8	12
9	Synaptic Therapy in Alzheimer's Disease: A CREB-centric Approach. Neurotherapeutics, 2015, 12, 29-41.	2.1	117
10	Dynamin 1 Is Required for Memory Formation. PLoS ONE, 2014, 9, e91954.	1.1	32
11	Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits. PLoS ONE, 2014, 9, e111898.	1.1	120
12	Design, Synthesis, and Optimization of Novel Epoxide Incorporating Peptidomimetics as Selective Calpain Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6054-6068.	2.9	27
13	Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy. Journal of Medicinal Chemistry, 2012, 55, 6784-6801.	2.9	26
14	Furoxans (1,2,5-Oxadiazole- <i>N</i> -Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents. Journal of Medicinal Chemistry, 2012, 55, 3076-3087.	2.9	74
15	Endogenous amyloidâ€Î² is necessary for hippocampal synaptic plasticity and memory. Annals of Neurology, 2011, 69, 819-830.	2.8	248
16	Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20822-20827.	3.3	62
17	Preparation of Oligomeric β-amyloid ₁₋₄₂ and Induction of Synaptic Plasticity Impairment on Hippocampal Slices. Journal of Visualized Experiments, 2010, , .	0.2	45
18	GABAB receptor activation exacerbates spontaneous spike-and-wave discharges in DBA/2J mice. Seizure: the Journal of the British Epilepsy Association, 2010, 19, 226-231.	0.9	24

Mauro FÃ

#	Article	IF	CITATIONS
19	Dysregulation of Histone Acetylation in the APP/PS1 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 131-139.	1.2	255
20	Picomolar Amyloid-β Positively Modulates Synaptic Plasticity and Memory in Hippocampus. Journal of Neuroscience, 2008, 28, 14537-14545.	1.7	627
21	Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. Journal of Clinical Investigation, 2008, 118, 2796-2807.	3.9	192
22	Effects of Topiramate on the Prepulse Inhibition of the Acoustic Startle in Rats. Neuropsychopharmacology, 2007, 32, 320-331.	2.8	18
23	Levetiracetam attenuates spontaneous spike-and-wave discharges in DBA/2J mice. Epilepsy Research, 2007, 75, 224-227.	0.8	14
24	?-Synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. European Journal of Neuroscience, 2007, 25, 3583-3596.	1.2	31
25	Activation of GABAB receptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology, 2007, 194, 361-369.	1.5	43
26	Beta and Gamma Range EEG Power-Spectrum Correlation with Spiking Discharges in DBA/2J Mice Absence Model: Role of GABAB Receptors. Epilepsia, 2006, 47, 489-494.	2.6	34
27	Prenatal exposure to a cannabinoid receptor agonist does not affect sensorimotor gating in rats. European Journal of Pharmacology, 2006, 531, 166-170.	1.7	10
28	Stimulation of the locus coeruleus elicits noradrenaline and dopamine release in the medial prefrontal and parietal cortex. Journal of Neurochemistry, 2005, 92, 368-374.	2.1	131
29	Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus. BMC Neuroscience, 2005, 6, 31.	0.8	82
30	Synaptic Fatigue is More Pronounced in the APP/PS1 Transgenic Mouse Model of Alzheimers Disease. Current Alzheimer Research, 2005, 2, 137-140.	0.7	23
31	Activation of D1, but not D2 Receptors Potentiates Dizocilpine-Mediated Disruption of Prepulse Inhibition of the Startle. Neuropsychopharmacology, 2005, 30, 561-574.	2.8	29
32	Incorporation and metabolism of c9,t11 and t10,c12 conjugated linoleic acid (CLA) isomers in rat brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 61-6.	1.2	19
33	Kappa Opioid Receptor Activation Disrupts Prepulse Inhibition of the Acoustic Startle in Rats. Biological Psychiatry, 2005, 57, 1550-1558.	0.7	37
34	Electrophysiological and pharmacological characteristics of nigral dopaminergic neurons in the conscious, head-restrained rat. Synapse, 2003, 48, 1-9.	0.6	33
35	Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4915-4920.	3.3	176
36	Prenatal low-level exposure to CO alters postnatal development of hippocampal nitric oxide synthase and haem-oxygenase activities in rats. International Journal of Neuropsychopharmacology, 2001, 4, 219-22.	1.0	9

Mauro FÃ

#	Article	IF	CITATIONS
37	Cigarette smoke inhalation stimulates dopaminergic neurons in rats. NeuroReport, 2000, 11, 3637-3639.	0.6	18
38	γ-Hydroxybutyric Acid Intake in Ethanol-preferring sP and -nonpreferring sNP Rats. Physiology and Behavior, 1998, 64, 197-202.	1.0	35
39	Sardinian alcohol-preferring rats prefer chocolate and sucrose over ethanol. Alcohol, 1997, 14, 611-615.	0.8	36
40	Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Research, 1995, 671, 329-332.	1.1	558