Ãgnes Gallé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390081/publications.pdf

Version: 2024-02-01

567247 642715 1,169 23 15 23 citations h-index g-index papers 23 23 23 1737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. Journal of Plant Physiology, 2015, 176, 192-201.	3.5	284
2	Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 2014, 78, 15-26.	5.8	159
3	Comparison of the Drought Stress Responses of Tolerant and Sensitive Wheat Cultivars During Grain Filling: Changes in Flag Leaf Photosynthetic Activity, ABA Levels, and Grain Yield. Journal of Plant Growth Regulation, 2009, 28, 167-176.	5.1	100
4	Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. Journal of Plant Physiology, 2009, 166, 1878-1891.	3.5	87
5	Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiology and Biochemistry, 2012, 52, 119-129.	5.8	87
6	Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 2015, 183, 54-63.	3 . 5	64
7	Plant Glutathione Transferases and Light. Frontiers in Plant Science, 2018, 9, 1944.	3.6	63
8	Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: Biosynthesis and function of ABA in stress responses. Journal of Plant Physiology, 2013, 170, 1389-1399.	3. 5	58
9	Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regulation, 2018, 86, 181-194.	3.4	40
10	Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. Journal of Plant Physiology, 2016, 201, 62-70.	3. 5	35
11	Comprehensive analysis of antioxidant mechanisms in Arabidopsis glutathione peroxidase-like mutants under salt- and osmotic stress reveals organ-specific significance of the AtGPXL's activities. Environmental and Experimental Botany, 2018, 150, 127-140.	4.2	30
12	The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity. Plant Science, 2019, 283, 366-374.	3.6	25
13	Pest and disease management by red light. Plant, Cell and Environment, 2021, 44, 3197-3210.	5 . 7	23
14	The role of Arabidopsis glutathione transferase F9 gene under oxidative stress in seedlings. Acta Biologica Hungarica, 2015, 66, 406-418.	0.7	21
15	Relationship between osmotic stress-induced abscisic acid accumulation, biomass production and plant growth in drought-tolerant and -sensitive wheat cultivars. Acta Physiologiae Plantarum, 2010, 32, 719-727.	2.1	20
16	Compensation of Mutation in Arabidopsis glutathione transferase (AtGSTU) Genes under Control or Salt Stress Conditions. International Journal of Molecular Sciences, 2020, 21, 2349.	4.1	17
17	Overexpression of the Arabidopsis glutathione peroxidase-like 5 gene (AtGPXL5) resulted in altered plant development and redox status. Environmental and Experimental Botany, 2019, 167, 103849.	4.2	15
18	Time-Dependent Effects of Bentazon Application on the Key Antioxidant Enzymes of Soybean and Common Ragweed. Sustainability, 2020, 12, 3872.	3.2	10

Ãcnes Gallé

#	Article	IF	CITATIONS
19	Diurnal changes in tomato glutathione transferase activity and expression. Acta Biologica Hungarica, 2018, 69, 505-509.	0.7	9
20	Crosstalk between the redox signalling and the detoxification: GSTs under redox control?. Plant Physiology and Biochemistry, 2021, 169, 149-159.	5.8	9
21	Genome-wide identification of the glutathione transferase superfamily in the model organism Brachypodium distachyon. Functional Plant Biology, 2019, 46, 1049.	2.1	6
22	Biochemical response of hybrid black poplar tissue culture (PopulusÂ×Âcanadensis) on water stress. Journal of Plant Research, 2017, 130, 559-570.	2.4	5
23	Systemic response to Fusarium graminearum and culmorum inoculations: changes in detoxification of flag leaves in wheat. Cereal Research Communications, 2022, 50, 1055-1063.	1.6	2