You-Yeon Won

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389981/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface mechanical behavior of water-spread poly(styrene)–poly(ethylene glycol) (PS–PEG) micelles at the air–water interface: Effect of micelle size and polymer end/linking group chemistry. Journal of Colloid and Interface Science, 2022, 617, 764-777.	5.0	15
2	Pulmonary Pharmacokinetics of Polymer Lung Surfactants Following Pharyngeal Administration in Mice. Biomacromolecules, 2022, 23, 2471-2484.	2.6	6
3	Effect of Paclitaxel Stereochemistry on X-ray-Triggered Release of Paclitaxel from CaWO ₄ /Paclitaxel-Coloaded PEG-PLA Nanoparticles. Molecular Pharmaceutics, 2022, 19, 2776-2794.	2.3	5
4	Pilot-Scale Optimization of the Solvent Exchange Production and Lyophilization Processing of PEG–PLA Block Copolymer-Encapsulated CaWO ₄ Radioluminescent Nanoparticles for Theranostic Applications. Industrial & Engineering Chemistry Research, 2021, 60, 7081-7096.	1.8	2
5	Investigation of the Mechanisms and Kinetics of DBU-Catalyzed PLGA Copolymerization via a Full-Scale Population Balance Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 14685-14700.	1.8	4
6	MoS ₂ /Graphene Oxide/C ₆₀ -OH Nanostructures Deposited on a Quartz Crystal Microbalance Transducer for Humidity Sensing. ACS Applied Nano Materials, 2021, 4, 10810-10818.	2.4	21
7	Strategy for Synthesis of Statistically Sequence-Controlled Uniform PLGA and Effects of Sequence Distribution on Interaction and Drug Release Properties. ACS Macro Letters, 2021, 10, 1510-1516.	2.3	5
8	Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomaterials Science and Engineering, 2020, 6, 6053-6062.	2.6	178
9	Bilirubin-Coated Radioluminescent Particles for Radiation-Induced Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 4858-4872.	2.3	12
10	Enhancement of Mechano-Sensitivity for Spiropyran-Linked Poly(dimethylsiloxane) via Solvent Swelling. Macromolecules, 2020, 53, 7954-7961.	2.2	16
11	Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sensors and Actuators B: Chemical, 2020, 317, 128168.	4.0	28
12	Unexpected conformational behavior of poly(poly(ethylene glycol) methacrylate)-poly(propylene) Tj ETQq0 0 0 i copolymers in micellar solution and at the air-water interface. Journal of Colloid and Interface Science, 2020, 566, 304-315.	rgBT /Over 5.0	lock 10 Tf 50 8
13	Folic Acid-Conjugated Radioluminescent Calcium Tungstate Nanoparticles as Radio-Sensitizers for Cancer Radiotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 4776-4789.	2.6	13
14	Revised Formulation of Fick's, Fourier's, and Newton's Laws for Spatially Varying Linear Transport Coefficients. ACS Omega, 2019, 4, 11215-11222.	1.6	13
15	Radioluminescent nanoparticles for radiation-controlled release of drugs. Journal of Controlled Release, 2019, 303, 237-252.	4.8	23
16	Shear-induced particle migration and segregation in non-Brownian bidisperse suspensions under planar Poiseuille flow. Journal of Rheology, 2019, 63, 437-453.	1.3	18
17	PEG–PLA-Coated and Uncoated Radio-Luminescent CaWO ₄ Micro- and Nanoparticles for Concomitant Radiation and UV-A/Radio-Enhancement Cancer Treatments. ACS Biomaterials Science and Engineering, 2018, 4, 1445-1462.	2.6	18
18	Air–Water Interfacial Properties of Chloroform-Spread versus Water-Spread Poly((<scp>d</scp> , <scp>l</scp> -lactic acid- <i>co</i> glycolic acid)- <i>block</i> -ethylene glycol) (PLGA-PEG) Polymers. Langmuir, 2018, 34, 4874-4887.	1.6	9

#	Article	IF	CITATIONS
19	Clinical, technological, and economic issues associated with developing new lung surfactant therapeutics. Biotechnology Advances, 2018, 36, 1185-1193.	6.0	22
20	Determining the effects of PEI adsorption on the permeability of 1,2-dipalmitoylphosphatidylcholine/bis(monoacylglycero)phosphate membranes under osmotic stress. Acta Biomaterialia, 2018, 65, 317-326.	4.1	19
21	Polymer Lung Surfactants. ACS Applied Bio Materials, 2018, 1, 581-592.	2.3	17
22	Laser-Induced CO ₂ Generation from Gold Nanorod-Containing Poly(propylene) Tj ETQq0 0 0 rgBT /0 Materials & Interfaces, 2018, 10, 26084-26098.	Overlock 1 4.0	.0 Tf 50 627 1 8
23	Genetic Assembly of Double‣ayered Fluorescent Protein Nanoparticles for Cancer Targeting and Imaging. Advanced Science, 2017, 4, 1600471.	5.6	19
24	Technical Note: A simulation study on the feasibility of radiotherapy dose enhancement with calcium tungstate and hafnium oxide nano―and microparticles. Medical Physics, 2017, 44, 6583-6588.	1.6	9
25	Increased humidity can soften glassy Langmuir polymer films by two mechanisms: plasticization of the polymer material, and suppression of the evaporation cooling effect. Physical Chemistry Chemical Physics, 2017, 19, 10663-10675.	1.3	10
26	Near-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis. Scientific Reports, 2017, 7, 17327.	1.6	39
27	Nontoxic Formulations of Scintillation Nanocrystals for Use as X-ray Computed Tomography Contrast Agents. Bioconjugate Chemistry, 2017, 28, 171-182.	1.8	18
28	Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy. Theranostics, 2016, 6, 1362-1377.	4.6	170
29	Block Copolymer-Encapsulated CaWO ₄ Nanoparticles: Synthesis, Formulation, and Characterization. ACS Applied Materials & amp; Interfaces, 2016, 8, 8608-8619.	4.0	20
30	Elucidating a Unified Mechanistic Scheme for the DBU-Catalyzed Ring-Opening Polymerization of Lactide to Poly(lactic acid). Macromolecules, 2016, 49, 4699-4713.	2.2	61
31	Surface Mechanical and Rheological Behaviors of Biocompatible Poly((d,l-lactic acid-ran-glycolic) Tj ETQq1 1 0.78	1.6	T /Overlock 1 12
32	Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(<scp>d</scp> , <scp>l</scp> -lactic acid-ran-glycolic acid) (PLGA). Soft Matter, 2015, 11, 5666-5677.	1.2	20
33	CO2-producing polymer micelles. Polymer Degradation and Stability, 2015, 120, 149-157.	2.7	4
34	A simple derivation of the critical condition for the ultrasonic atomization of polymer solutions. Ultrasonics, 2015, 61, 20-24.	2.1	4
35	Effects of nanoparticles on the mechanical functioning of the lung. Advances in Colloid and Interface Science, 2015, 225, 218-228.	7.0	70
36	A photo-degradable gene delivery system for enhanced nuclear gene transcription. Biomaterials, 2014, 35, 1040-1049.	5.7	25

#	Article	IF	CITATIONS
37	Macroscopic lateral heterogeneity observed in a laterally mobile immiscible mixed polyelectrolyte–neutral polymer brush. Soft Matter, 2014, 10, 3771-3782.	1.2	8
38	Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnology Advances, 2014, 32, 1037-1050.	6.0	110
39	"pH phoresis― A new concept that can be used for improving drug delivery to tumor cells. Journal of Controlled Release, 2013, 170, 396-400.	4.8	8
40	The Effect of N/ <scp>P</scp> Ratio on the In Vitro and In Vivo Interaction Properties of <scp>PEG</scp> ylated Poly[2â€(dimethylamino)ethyl methacrylate]â€ <scp>B</scp> ased si <scp>RNA</scp> Complexes. Macromolecular Bioscience, 2013, 13, 1059-1071.	2.1	58
41	Reduced Water Density in a Poly(ethylene oxide) Brush. Journal of Physical Chemistry Letters, 2012, 3, 1589-1595.	2.1	13
42	Study of the Air–Water Interfacial Properties of Biodegradable Polyesters and Their Block Copolymers with Poly(ethylene glycol). Langmuir, 2012, 28, 11555-11566.	1.6	25
43	Confinement induced lateral segregation of polymer coated nanospheres. Soft Matter, 2012, 8, 1688-1700.	1.2	10
44	Water Is a Poor Solvent for Densely Grafted Poly(ethylene oxide) Chains: A Conclusion Drawn from a Self-Consistent Field Theory-Based Analysis of Neutron Reflectivity and Surface Pressure–Area Isotherm Data. Journal of Physical Chemistry B, 2012, 116, 7367-7378.	1.2	21
45	Preparation of Super-Stable Gold Nanorods via Encapsulation into Block Copolymer Micelles. ACS Applied Materials & Interfaces, 2012, 4, 1872-1877.	4.0	20
46	In Situ Polymerized Carbon Nanotube/Polyimide Nanocomposites: Effect of Reaction Stoichiometry on the Class Transition Properties of the Nanocomposites. Macromolecular Reaction Engineering, 2012, 6, 45-56.	0.9	6
47	Influence of Nano-Carrier Architecture on <i>in Vitro</i> siRNA Delivery Performance and <i>in Vivo</i> Biodistribution: Polyplexes <i>vs</i> Micelleplexes. ACS Nano, 2011, 5, 3493-3505.	7.3	109
48	A Discussion of the pH-Dependent Protonation Behaviors of Poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rgBT /Ove Journal of Physical Chemistry B, 2011, 115, 844-860.	rlock 10 T 1.2	f 50 307 Td 125
49	On the Origins of the Salt-Concentration-Dependent Instability and Lateral Nanoscale Heterogeneities of Weak Polyelectrolyte Brushes: Gradient Brush Experiment and Flory-Type Theoretical Analysis. Langmuir, 2010, 26, 2021-2034.	1.6	26
50	Formation and Collapse of Single-Monomer-Thick Monolayers of Poly(<i>n</i> -butyl acrylate) at the Airâ^Water Interface. Macromolecules, 2010, 43, 2990-3003.	2.2	26
51	Crystallization of Bidisperse Repulsive Colloids in Two-Dimensional Space: A Study of Model Systems Constructed at the Airâ^'Water Interface. Langmuir, 2010, 26, 11737-11749.	1.6	9
52	Effects of the Molecular Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization Kinetics of a Small Drug Molecule. Crystal Growth and Design, 2010, 10, 3585-3595.	1.4	66
53	Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. Journal of Controlled Release, 2009, 139, 88-93.	4.8	158
54	Self-Consistent Field Theory Study of the Effect of Grafting Density on the Height of a Weak Polyelectrolyte Brush. Journal of Physical Chemistry B, 2009, 113, 11076-11084.	1.2	50

#	Article	IF	CITATIONS
55	Fabrication of high-quality non-close-packed 2D colloid crystals by template-guided Langmuir–Blodgett particle deposition. Soft Matter, 2008, 4, 1261.	1.2	38
56	Effects of the Incorporation of a Hydrophobic Middle Block into a PEGâ^'Polycation Diblock Copolymer on the Physicochemical and Cell Interaction Properties of the Polymerâ^'DNA Complexes. Biomacromolecules, 2008, 9, 3294-3307.	2.6	90
57	Evidence of Lateral Nanoscale Heterogeneities in Weak Polyelectrolyte Brushes. Macromolecules, 2008, 41, 8960-8963.	2.2	16
58	Two-Dimensional Colloid Crystals Templated by Polyelectrolyte Multilayer Patterns. Langmuir, 2008, 24, 5382-5392.	1.6	9
59	Effect of Interfacial Curvature on the Miscibility of Laterally Mobile, Mixed Polyelectrolyte and Neutral Polymer Brushes: An SCF Numerical Analysis. Macromolecules, 2008, 41, 2735-2738.	2.2	12
60	Application of Molecular Rotors to the Determination of the Molecular Weight Dependence of Viscosity in Polymer Melts. Macromolecules, 2007, 40, 7730-7732.	2.2	35
61	Preparation of Calcium Alginate Microgel Beads in an Electrodispersion Reactor Using an Internal Source of Calcium Carbonate Nanoparticles. Langmuir, 2007, 23, 12489-12496.	1.6	59
62	Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. Journal of Controlled Release, 2007, 121, 64-73.	4.8	475
63	Inhibitive Chain Transfer to Ligand in the ATRP ofn-Butyl Acrylate. Macromolecules, 2006, 39, 4680-4689.	2.2	21
64	Self-Consistent-Field Analysis of Mixed Polyelectrolyte and Neutral Polymer Brushes. Macromolecules, 2006, 39, 7757-7768.	2.2	31
65	Effect of Temperature on Carbon-Black Agglomeration in Hydrocarbon Liquid with Adsorbed Dispersant. Langmuir, 2005, 21, 924-932.	1.6	82
66	Imaging nanostructured fluids using cryo-TEM. Korean Journal of Chemical Engineering, 2004, 21, 296-302.	1.2	18
67	Molecular Exchange in PEOâ^'PB Micelles in Water. Macromolecules, 2003, 36, 953-955.	2.2	174
68	Effect of Surfactant on Unilamellar Polymeric Vesicles:Â Altered Membrane Properties and Stability in the Limit of Weak Surfactant Partitioning. Langmuir, 2002, 18, 7299-7308.	1.6	34
69	Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film Lithium Batteries. Electrochemical and Solid-State Letters, 2002, 5, A85.	2.2	80
70	Cross-linked Polymersome Membranes:  Vesicles with Broadly Adjustable Properties. Journal of Physical Chemistry B, 2002, 106, 2848-2854.	1.2	249
71	Cryogenic Transmission Electron Microscopy (Cryo-TEM) of Micelles and Vesicles Formed in Water by Poly(ethylene oxide)-Based Block Copolymers. Journal of Physical Chemistry B, 2002, 106, 3354-3364.	1.2	320
72	Comparison of Original and Cross-linked Wormlike Micelles of Poly(ethylene oxide-b-butadiene) in Water:  Rheological Properties and Effects of Poly(ethylene oxide) Addition. Journal of Physical Chemistry B, 2001, 105, 8302-8311.	1.2	56

#	Article	IF	CITATIONS
73	Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and Bioengineering, 2001, 73, 135-145.	1.7	384
74	Thermogelling Biodegradable Polymers with Hydrophilic Backbones:Â PEG-g-PLGA. Macromolecules, 2000, 33, 8317-8322.	2.2	190
75	Segment Distribution of the Micellar Brushes of Poly(ethylene oxide) via Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2000, 104, 7134-7143.	1.2	89
76	Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science, 1999, 284, 1143-1146.	6.0	2,369
77	Directly Resolved Core-Corona Structure of Block Copolymer Micelles by Cryo-Transmission Electron Microscopy. Journal of Physical Chemistry B, 1999, 103, 10331-10334.	1.2	104
78	Cellular mimics engineered from diblock copolymers. , 0, , .		3