Nora Kulak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen) ₂] ²⁺ Shows Unattended DNA Cleavage Activity upon Fluorination. Chemistry - A European Journal, 2021, 27, 3273-3277.	1.7	15
2	Dipyrrinatoâ€Iridium(III) Complexes for Application in Photodynamic Therapy and Antimicrobial Photodynamic Inactivation. Chemistry - A European Journal, 2021, 27, 6440-6459.	1.7	35
3	Copper(II) Complexes with Tetradentate Piperazine-Based Ligands: DNA Cleavage and Cytotoxicity. Inorganics, 2021, 9, 12.	1.2	16
4	Iron(III)â€ <i>t</i> CDTA derivatives as MRI contrast agents: Increased T ₁ relaxivities at higher magnetic field strength and pH sensing. Magnetic Resonance in Medicine, 2021, 85, 3370-3382.	1.9	15
5	Incorporation of βâ€Alanine in Cu(II) ATCUN Peptide Complexes Increases ROS Levels, DNA Cleavage and Antiproliferative Activity**. Chemistry - A European Journal, 2021, 27, 18093-18102.	1.7	12
6	Investigating Alkylated Prodigiosenes and Their Cu(II)â€Đependent Biological Activity: Interactions with DNA, Antimicrobial and Photoinduced Anticancer Activity. ChemMedChem, 2021, , .	1.6	3
7	Exploring the relationship between structure and activity in BODIPYs designed for antimicrobial phototherapy. Organic and Biomolecular Chemistry, 2020, 18, 2416-2431.	1.5	12
8	Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: Impact on redox chemistry and oxidative DNA cleavage activity. Journal of Inorganic Biochemistry, 2019, 194, 223-232.	1.5	13
9	Synthesis of Porphyrinoids, BODIPYs, and (Dipyrrinato)ruthenium(II) Complexes from Prefunctionalized Dipyrromethanes. European Journal of Organic Chemistry, 2019, 2019, 4020-4033.	1.2	16
10	Click chemistry on silicon nitride for biosensor fabrication. Applied Surface Science, 2019, 481, 10-15.	3.1	8
11	Biological activity of amphiphilic metal complexes. Coordination Chemistry Reviews, 2019, 385, 191-207.	9.5	45
12	Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors. Inorganic Chemistry, 2018, 57, 5004-5012.	1.9	17
13	Cu(II) complexes with hydrazone-functionalized phenanthrolines as self-activating metallonucleases. Inorganica Chimica Acta, 2018, 481, 79-86.	1.2	15
14	A fluorescence assay for the detection of hydrogen peroxide and hydroxyl radicals generated by metallonucleases. Chemical Communications, 2018, 54, 13411-13414.	2.2	28
15	Monoalkylated Cyclen Complexes for Efficient Proteolysis: Influence of Donor Atom Exchange. ChemistrySelect, 2018, 3, 12552-12559.	0.7	1
16	Efficient Artificial Nucleases for Mediating DNA Cleavage Based on Tuning the Steric Effect in the Pyridyl Derivatives of Tripod Tetraamine obalt(II) Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 2322-2338.	1.0	22
17	Pre-/post-functionalization in dipyrrin metal complexes – antitumor and antibacterial activity of their glycosylated derivatives. Dalton Transactions, 2018, 47, 12373-12384.	1.6	19
18	Synthesis and Evaluation of Artificial DNA Scissors: An Interdisciplinary Undergraduate Experiment. Journal of Chemical Education, 2018, 95, 1848-1855.	1.1	7

Nora Kulak

#	Article	IF	CITATIONS
19	Sequential Nucleophilic Substitution of the αâ€Pyrrole and <i>p</i> â€Aryl Positions of <i>meso</i> â€Pentafluorophenylâ€Substituted BODIPYs. European Journal of Organic Chemistry, 2017, 2017, 3187-3196.	1.2	14
20	Synthesis of fluorine-containing 1,10-phenanthrolines using mild versions of Skraup and Doebner-von Miller reactions. Journal of Fluorine Chemistry, 2017, 193, 98-105.	0.9	12
21	New azidation methods for the functionalization of silicon nitride and application in copperâ€catalyzed azideâ€alkyne cycloaddition (CuAAC). Surface and Interface Analysis, 2016, 48, 621-625.	0.8	8
22	Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon. Applied Surface Science, 2016, 363, 406-411.	3.1	65
23	Tuning the DNA binding and cleavage of bpa Cu(II) complexes by ether tethers with hydroxyl and methoxy groups. Inorganica Chimica Acta, 2016, 452, 159-169.	1.2	8
24	Nucleophilic Aromatic Substitution on Pentafluorophenylâ€Substituted Dipyrranes and Tetrapyrroles as a Route to Multifunctionalized Chromophores for Potential Application in Photodynamic Therapy. Chemistry - A European Journal, 2016, 22, 13953-13964.	1.7	23
25	Significantly enhanced proteolytic activity of cyclen complexes by monoalkylation. Dalton Transactions, 2016, 45, 10500-10504.	1.6	8
26	From Cyclen to 12 rownâ€4 Copper(II) Complexes: Exchange of Donor Atoms Improves DNA Cleavage Activity. European Journal of Inorganic Chemistry, 2015, 2015, 4722-4730.	1.0	12
27	Activatable Metallonucleases. , 2015, , .		0
28	Mononuclear Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) complexes with a simple diamine ligand: synthesis, structure, phosphodiester binding and DNA cleavage studies. RSC Advances, 2015, 5, 22405-22418.	1.7	30
29	Fluorophore ATCUN complexes: combining agent and probe for oxidative DNA cleavage. Chemical Communications, 2015, 51, 12395-12398.	2.2	27
30	Quantification of Silane Molecules on Oxidized Silicon: Are there Options for a Traceable and Absolute Determination?. Analytical Chemistry, 2015, 87, 10117-10124.	3.2	62
31	Copper Complexes of N-Donor Ligands as Artificial Nucleases. European Journal of Inorganic Chemistry, 2014, 2014, 2584-2584.	1.0	0
32	Copper Complexes of Nâ€Donor Ligands as Artificial Nucleases. European Journal of Inorganic Chemistry, 2014, 2014, 2597-2612.	1.0	67
33	Reaction of a Bis(benzoylhydrazone) with Copper(II): Complex Formation, Hydroxylation, and DNA Cleavage Activity. European Journal of Inorganic Chemistry, 2013, 2013, 5843-5853.	1.0	14
34	Nanoparticle Encapsulation of Mitaplatin and the Effect Thereof on <i>In Vivo</i> Properties. ACS Nano, 2013, 7, 5675-5683.	7.3	89
35	Straightforward approach to efficient oxidative DNA cleaving agents based on Cu(ii) complexes of heterosubstituted cyclens. Dalton Transactions, 2013, 42, 4357.	1.6	19
36	Redox activation of metal-based prodrugs as a strategy for drug delivery. Advanced Drug Delivery Reviews, 2012, 64, 993-1004.	6.6	432

NORA KULAK

#	Article	IF	CITATIONS
37	α _V β ₃ Integrin-Targeted PLGA-PEG Nanoparticles for Enhanced Anti-tumor Efficacy of a Pt(IV) Prodrug. ACS Nano, 2012, 6, 4530-4539.	7.3	281
38	Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells. Journal of Inorganic Biochemistry, 2012, 110, 58-63.	1.5	95
39	Role of Endonucleases XPF and XPG in Nucleotide Excision Repair of Platinated DNA and Cisplatin/Oxaliplatin Cytotoxicity. ChemBioChem, 2011, 12, 1115-1123.	1.3	46
40	Determination of accessible amino groups on surfaces by chemical derivatization with 3,5-bis(trifluoromethyl)phenyl isothiocyanate and XPS/NEXAFS analysis. Analytical and Bioanalytical Chemistry, 2010, 396, 725-738.	1.9	39
41	Amine species on selfâ€assembled monolayers of ωâ€aminothiolates on gold as identified by XPS and NEXAFS spectroscopy. Surface and Interface Analysis, 2010, 42, 1184-1187.	0.8	44
42	Self-Assembled Monolayers of Aromatic ω-Aminothiols on Gold: Surface Chemistry and Reactivity. Langmuir, 2010, 26, 3949-3954.	1.6	17
43	XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surface Science, 2009, 603, 2849-2860.	0.8	357
44	Application of XPS and ToF-SIMS for surface chemical analysis of DNA microarrays and their substrates. Analytical and Bioanalytical Chemistry, 2009, 393, 1907-1912.	1.9	25
45	Optimization of cleaning and amino―silanization protocols for Si wafers to be used as platforms for biochip microarrays by surface analysis (XPS, ToFâ€SIMS and NEXAFS spectroscopy). Surface and Interface Analysis, 2008, 40, 180-183.	0.8	16
46	Using enzymatic amplification by aldolase for the optical detection of DNA by an artificial signal cascade. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4786-4788.	1.0	4
47	Enzymatic amplification in a bioinspired, autonomous signal cascade. Chemical Communications, 2006, , 4375-4376.	2.2	26
48	A Metal-Ion-Releasing Probe for DNA Detection by Catalytic Signal Amplification. Angewandte Chemie -	7.2	57

International Edition, 2006, 45, 4013-4015. 48