Xuben Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389625/publications.pdf

Version: 2024-02-01

394286 377752 1,304 61 19 34 citations h-index g-index papers 61 61 61 1900 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1Î ² production via suppressing the NF-κB pathway and ROS production. Journal of Hepatology, 2017, 66, 693-702.	1.8	232
2	How to Improve Docking Accuracy of AutoDock4.2: A Case Study Using Different Electrostatic Potentials. Journal of Chemical Information and Modeling, 2013, 53, 188-200.	2.5	97
3	New techniques and strategies in drug discovery. Chinese Chemical Letters, 2020, 31, 1695-1708.	4.8	82
4	Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Scientific Reports, 2016, 6, 38186.	1.6	71
5	Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions. Journal of Chemical Information and Modeling, 2019, 59, 4540-4549.	2.5	66
6	Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nature Communications, 2021, 12, 2656.	5.8	51
7	Design, synthesis and preliminary bioactivity studies of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 3865-3872.	1.4	43
8	Enhancing the Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Customized ZBG Features: A Case Study Using Histone Deacetylase 8. Journal of Chemical Information and Modeling, 2015, 55, 861-871.	2.5	40
9	Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4364-4374.	1.4	36
10	Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors. European Journal of Medicinal Chemistry, 2017, 133, 11-23.	2.6	35
11	Discovery of Peptide Boronate Derivatives as Histone Deacetylase and Proteasome Dual Inhibitors for Overcoming Bortezomib Resistance of Multiple Myeloma. Journal of Medicinal Chemistry, 2020, 63, 4701-4715.	2.9	34
12	Improved antiproliferative activity of 1,3,4-thiadiazole-containing histone deacetylase (HDAC) inhibitors by introduction of the heteroaromatic surface recognition motif. Bioorganic and Medicinal Chemistry, 2014, 22, 5766-5775.	1.4	33
13	Design, synthesis and preliminary bioactivity studies of 2-thioxo-4-thiazolidinone derivatives as Bcl-2 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 1994-2003.	1.4	27
14	Protein Flexibility in Docking-Based Virtual Screening: Discovery of Novel Lymphoid-Specific Tyrosine Phosphatase Inhibitors Using Multiple Crystal Structures. Journal of Chemical Information and Modeling, 2015, 55, 1973-1983.	2.5	27
15	Fast Identification of Novel Lymphoid Tyrosine Phosphatase Inhibitors Using Target–Ligand Interaction-Based Virtual Screening. Journal of Medicinal Chemistry, 2014, 57, 9309-9322.	2.9	23
16	Design, synthesis and preliminary biological studies of pyrrolidine derivatives as Mcl-1 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 7685-7693.	1.4	23
17	Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5265-5269.	1.0	22
18	Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors. European Journal of Medicinal Chemistry, 2019, 181, 111563.	2.6	21

#	Article	IF	CITATIONS
19	Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 7359-7365.	1.4	19
20	Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharmaceutica Sinica B, 2021, 11, 3908-3924.	5.7	18
21	Design, Synthesis, and Biological Evaluation of 2,4-Imidazolinedione Derivatives as HDAC6 Isoform-Selective Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1122-1127.	1.3	17
22	Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Medicinal Research Reviews, 2022, 42, 1064-1110.	5.0	16
23	Discovery of DNA-Targeting HDAC Inhibitors with Potent Antitumor Efficacy In Vivo That Trigger Antitumor Immunity. Journal of Medicinal Chemistry, 2022, 65, 3667-3683.	2.9	16
24	Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 1529-1538.	1.4	15
25	Design, synthesis and biological evaluation of saccharin-based N -hydroxybenzamides as histone deacetylases (HDACs) inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 5774-5781.	1.4	15
26	3D-QSAR Study on a Series of Bcl-2 Protein Inhibitors Using Comparative Molecular Field Analysis. Protein and Peptide Letters, 2011, 18, 440-449.	0.4	14
27	HDAC–Bax Multiple Ligands Enhance Bax-Dependent Apoptosis in HeLa Cells. Journal of Medicinal Chemistry, 2020, 63, 12083-12099.	2.9	13
28	High-performance liquid chromatographic enantioseparation of 3,5-disubstituted hydantoins analogs and temperature-induced reversals of elution orders on a polysaccharide-based chiral stationary phase. Journal of Chromatography A, 2014, 1355, 291-295.	1.8	12
29	Design, synthesis and preliminary bioactivity studies of indomethacin derivatives as Bcl-2/Mcl-1 dual inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 2771-2783.	1.4	12
30	Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors. European Journal of Medicinal Chemistry, 2020, 191, 112142.	2.6	12
31	Enantioseparation of lysine derivatives on amylose tris (3, 5-dimethylphenylcarbamate) as chiral stationary phase with high separation factor. Journal of Chromatography A, 2020, 1632, 461598.	1.8	11
32	Recent Advances in Small Molecule PROTACs for the Treatment of Cancer. Current Medicinal Chemistry, 2021, 28, 4893-4909.	1.2	11
33	Recent Applications of Benzimidazole as a Privileged Scaffold in Drug Discovery. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1367-1379.	1.1	11
34	Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. MedChemComm, 2014, 5, 1887-1891.	3.5	10
35	Identification of <i>para</i> â€Substituted Benzoic Acid Derivatives as Potent Inhibitors of the Protein Phosphatase Slingshot. ChemMedChem, 2015, 10, 1980-1987.	1.6	9
36	Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors. Journal of Chemical Information and Modeling, 2018, 58, 2331-2342.	2.5	8

#	Article	IF	CITATIONS
37	Identification and structure–function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. Journal of Biological Chemistry, 2019, 294, 8653-8663.	1.6	8
38	Design, synthesis and biological evaluation of 3, 4-disubstituted-imidazolidine-2, 5-dione derivatives as HDAC6 selective inhibitors. European Journal of Medicinal Chemistry, 2021, 221, 113526.	2.6	8
39	Design, synthesis and biological evaluation of imidazolidine-2,4-dione and 2-thioxothiazolidin-4-one derivatives as lymphoid-specific tyrosine phosphatase inhibitors. Bioorganic Chemistry, 2020, 103, 104124.	2.0	7
40	Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opinion on Investigational Drugs, 2021, 30, 61-76.	1.9	7
41	Antagonists of IAP Proteins: Novel Anti-Tumor Agents. Current Medicinal Chemistry, 2014, 21, 3877-3892.	1.2	7
42	Recent development of novel HDAC6 isoform-selective inhibitors Current Medicinal Chemistry, 2020, 27, 4133-4151.	1.2	7
43	PTPRO is a therapeutic target and correlated with immune infiltrates in pancreatic cancer. Journal of Cancer, 2021, 12, 7445-7453.	1.2	6
44	Identification of a benzo imidazole thiazole derivative as the specific irreversible inhibitor of protein tyrosine phosphatase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4795-4798.	1.0	5
45	An in silico mechanistic insight into HDAC8 activation facilitates the discovery of new small-molecule activators. Bioorganic and Medicinal Chemistry, 2020, 28, 115607.	1.4	5
46	Structure-based virtual screening, biological evaluation and biophysical study of novel Mcl-1 inhibitors. Future Medicinal Chemistry, 2020, 12, 1293-1304.	1.1	5
47	Palmarumycin P3 Reverses Mrr1-Mediated Azole Resistance by Blocking the Efflux Pump Mdr1. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0212621.	1.4	5
48	Boronate-Based Fluorescent Probes as a Prominent Tool for H2O2 Sensing and Recognition. Current Medicinal Chemistry, 2021, 28, .	1.2	4
49	Heparosan oligosaccharide synthesis using engineered single-function glycosyltransferases. Catalysis Science and Technology, 2022, 12, 3793-3803.	2.1	4
50	Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets. European Journal of Medicinal Chemistry, 2020, 190, 112131.	2.6	3
51	Substrate interaction inhibits \hat{I}^3 -secretase production of amyloid- \hat{I}^2 peptides. Chemical Communications, 2020, 56, 2578-2581.	2.2	3
52	Synthesis and evaluation of a UMI-77-based fluorescent probe for selective detecting McI-1 protein and imaging in living cancer cells. Bioorganic and Medicinal Chemistry, 2021, 29, 115850.	1.4	3
53	A novel selective histone deacetylase I inhibitor CC-4a activates latent HIV-1 through NF-κB pathway. Life Sciences, 2021, 267, 118427.	2.0	3
54	Recent Advances in the Development of Selective Mcl-1 Inhibitors for the Treatment of Cancer (2017-Present). Recent Patents on Anti-Cancer Drug Discovery, 2020, 15, 306-320.	0.8	3

Хивен Нои

#	Article	IF	CITATION
55	Photopharmacology-based small-molecule proteolysis targeting chimeras: optical control of protein degradation. Future Medicinal Chemistry, 2020, 12, 1991-1993.	1.1	3
56	Design, synthesis and biological evaluation of hydantoin derivatives as Mcl-1 selective inhibitors. Bioorganic Chemistry, 2022, 121, 105643.	2.0	3
57	Structure, Function and Modulation of Striatal-enriched Protein Tyrosine Phosphatase (STEP). Current Medicinal Chemistry, 2021, 28, 7714-7728.	1.2	2
58	Potential applications of BPFP1 in Bcl-2 protein quantification, carcinoma cell visualization, cell sorting and early cancer diagnosis. European Journal of Medicinal Chemistry, 2021, 224, 113725.	2.6	1
59	Density functional theory based quantitative structure-property relationship studies on coumarin-based prodrugs. BioScience Trends, 2012, 6, 234-240.	1.1	O
60	Dual Inhibitors Targeting DNA and Histone Deacetylases. Pharmaceutical Fronts, 2020, 02, e88-e93.	0.4	0
61	Structure-Based Design of 2-Aminopurine Derivatives as CDK2 Inhibitors for Triple-Negative Breast Cancer. Frontiers in Pharmacology, 2022, 13, 864342.	1.6	O