
Antonio Rodes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroelectrochemical and DFT approaches to the study of croconic acid adsorption at gold electrodes in acidic solutions. Journal of Electroanalytical Chemistry, 2021, 896, 115396.	1.9	1
2	Cyanate and Cyanurate Adsorption at Silver Electrodes in Neutral Solutions: In Situ ATR-SEIRAS and DFT Studies. Journal of Physical Chemistry C, 2020, 124, 709-721.	1.5	4
3	Acetonitrile Adsorption on Pt Single-Crystal Electrodes and Its Effect on Oxygen Reduction Reaction in Acidic and Alkaline Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 2300-2313.	1.5	19
4	Squaric acid adsorption and oxidation at gold and platinum electrodes. Journal of Electroanalytical Chemistry, 2018, 819, 178-186.	1.9	5
5	Spectroelectrochemical and Density Functional Theory Study of Squaric Acid Adsorption and Oxidation at Gold Thin Film and Single Crystal Electrodes. Journal of Physical Chemistry C, 2018, 122, 22352-22365.	1.5	5
6	Voltammetric and in situ infrared spectroscopy studies of hydroxyurea electrooxidation at Au(111) electrodes in HClO4 solutions. Electrochemistry Communications, 2017, 76, 34-37.	2.3	3
7	Spectroelectrochemical detection of specifically adsorbed cyanurate anions at gold electrodes with (111) orientation in contact with cyanate and cyanuric acid neutral solutions. Journal of Electroanalytical Chemistry, 2017, 800, 167-175.	1.9	8
8	Hydroxyurea electrooxidation at gold electrodes. In situ infrared spectroelectrochemical and DFT characterization of adsorbed intermediates. Electrochimica Acta, 2017, 246, 951-962.	2.6	8
9	DFT and spectroelectrochemical study of cyanate adsorption on gold single crystal electrodes in neutral medium. Journal of Electroanalytical Chemistry, 2017, 793, 147-156.	1.9	9
10	Formation of cyanuric acid from cyanate adsorbed at gold electrodes. Electrochemistry Communications, 2017, 74, 1-4.	2.3	5
11	Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO ₂ -Containing Perchloric Acid Solutions. Journal of Physical Chemistry C, 2016, 120, 16191-16199.	1.5	31
12	On the electrochemical behavior of formamidine disulfide on gold electrodes in acid media. Journal of Electroanalytical Chemistry, 2016, 764, 79-87.	1.9	6
13	Spectroelectrochemical Study of the Photoinduced Catalytic Formation of 4,4′-Dimercaptoazobenzene from 4-Aminobenzenethiol Adsorbed on Nanostructured Copper. Journal of Physical Chemistry C, 2015, 119, 12312-12324.	1.5	21
14	ATR-SEIRAS study of CO adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4. Electrochimica Acta, 2015, 176, 1202-1213.	2.6	11
15	Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. Surface Science, 2015, 631, 213-219.	0.8	8
16	Spectroelectrochemical and DFT Study of Thiourea Adsorption on Gold Electrodes in Acid Media. Journal of Physical Chemistry C, 2014, 118, 19070-19084.	1.5	17
17	In situ Fourier transform infrared reflection absortion spectroscopy study of adenine adsorption on gold electrodes in basic media. Electrochimica Acta, 2014, 140, 476-481.	2.6	30
18	Do You Really Understand the Electrochemical Nernst Equation?. Electrocatalysis, 2013, 4, 1-9.	1.5	4

#	Article	IF	CITATIONS
19	A comparative study of the adsorption and oxidation of L-alanine and L-serine on Au(1 0 0), Au(1 1 1) and gold thin film electrodes in acid media. Electrochimica Acta, 2013, 89, 72-83.	2.6	31
20	Evidences of adenine–thymine Interactions at gold electrodes interfaces as provided by in-situ infrared spectroscopy. Electrochemistry Communications, 2013, 35, 53-56.	2.3	11
21	Size-Dependent and Step-Modulated Supramolecular Electrochemical Properties of Catechol-Derived Adlayers at Pt(<i>hkl</i>) Surfaces. Langmuir, 2013, 29, 13102-13110.	1.6	1
22	SERS on (111) Surface Nanofacets at Pt Nanoparticles: The Case of Acetaldehyde Oxime Reduction. Journal of Physical Chemistry C, 2012, 116, 10781-10789.	1.5	11
23	Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students. Journal of Chemical Education, 2012, 89, 936-939.	1.1	38
24	In situ infrared study of adenine adsorption on gold electrodes in acid media. Electrochimica Acta, 2012, 82, 534-542.	2.6	22
25	Adsorption of Glycine on Au(<i>hkl</i>) and Gold Thin Film Electrodes: An in Situ Spectroelectrochemical Study. Journal of Physical Chemistry C, 2011, 115, 16439-16450.	1.5	31
26	Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study. Electrochimica Acta, 2010, 55, 2055-2064.	2.6	23
27	A macroscopic and molecular view of photoinduced reactions on nanostructured semiconductor thin films. Chemical Communications, 2010, 46, 2992.	2.2	9
28	Oxalic acid photooxidation on rutile nanowire electrodes. Physical Chemistry Chemical Physics, 2010, 12, 10503.	1.3	11
29	Theoretical and Spectroelectrochemical Studies on the Adsorption and Oxidation of Glyoxylate and Hydrated Glyoxylate Anions at Gold Electrodes. Journal of Physical Chemistry C, 2010, 114, 12554-12564.	1.5	19
30	Domain-Selective Reactivity of Hydroquinone-Derived Adlayers at Basal Pt(hkl) Single-Crystal Electrodes. Langmuir, 2009, 25, 10337-10344.	1.6	8
31	DFT and In-Situ Spectroelectrochemical Study of the Adsorption of Fluoroacetate Anions at Gold Electrodes. Journal of Physical Chemistry C, 2009, 113, 989-1000.	1.5	26
32	Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study. Journal of Physical Chemistry C, 2009, 113, 18784-18794.	1.5	34
33	Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 2008, 617, 130-140.	1.9	67
34	Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 2008, 53, 2309-2321.	2.6	53
35	Formate Adsorption onto Thin Films of Rutile TiO ₂ Nanorods and Nanowires. Langmuir, 2008, 24, 14035-14041.	1.6	13
36	Model System for the Study of 2D Phase Transitions and Supramolecular Interactions at Electrified Interfaces:  Hydrogen-Assisted Reductive Desorption of Catechol-Derived Adlayers from Pt(111) Single-Crystal Electrodes. Langmuir, 2008, 24, 3551-3561.	1.6	10

#	Article	IF	CITATIONS
37	In Situ Infrared Study of the Adsorption and Surface Acidâ^'Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. Journal of Physical Chemistry C, 2007, 111, 9943-9952.	1.5	40
38	B3LYP and in Situ ATR-SEIRAS Study of the Infrared Behavior and Bonding Mode of Adsorbed Acetate Anions on Silver Thin-Film Electrodes. Journal of Physical Chemistry C, 2007, 111, 14476-14483.	1.5	42
39	In-situ FTIR Studies on the Acid–Base Equilibria of Adsorbed Species on Well-Defined Metal Electrode Surfaces. , 2007, , 1-32.		4
40	Title is missing!. Electrochimica Acta, 2007, 52, 7172.	2.6	0
41	Photocatalytic behavior of suspended and supported semiconductor particles in aqueous media: Fundamental aspects using catechol as model molecule. Catalysis Today, 2007, 129, 86-95.	2.2	19
42	A comparison between chemical and sputtering methods for preparing thin-film silver electrodes for in situ ATR-SEIRAS studies. Electrochimica Acta, 2007, 52, 4605-4613.	2.6	31
43	Electrooxidation of xylitol on platinum single crystal electrodes: A voltammetric and in situ FTIRS study. Journal of Electroanalytical Chemistry, 2007, 609, 42-50.	1.9	9
44	In-Situ Infrared Study of the Adsorption and Oxidation of Oxalic Acid at Single-Crystal and Thin-Film Gold Electrodes:Â A Combined External Reflection Infrared and ATRâ^'SEIRAS Approach. Langmuir, 2006, 22, 7192-7202.	1.6	55
45	Photoelectrochemical Behavior of Nanostructured WO3 Thin-Film Electrodes: The Oxidation of Formic Acid. ChemPhysChem, 2006, 7, 2540-2551.	1.0	65
46	ATRâ^'SEIRAS Study of the Adsorption of Acetate Anions at Chemically Deposited Silver Thin Film Electrodes. Langmuir, 2005, 21, 8809-8816.	1.6	42
47	A Spectroscopic and Electrochemical Approach to the Study of the Interactions and Photoinduced Electron Transfer between Catechol and Anatase Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 2005, 127, 12601-12611.	6.6	160
48	Electrochemical properties of palladium adlayers on Pt(100) substrates. Surface Science, 2004, 573, 32-46.	0.8	30
49	Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2004, 563, 49-62.	1.9	53
50	An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the zone. Electrochimica Acta, 2004, 49, 1257-1269.	2.6	26
51	Structural and Spectroelectrochemical Study of Carbonate and Bicarbonate Adsorbed on Pt(111) and Pd/Pt(111) Electrodes. Journal of Physical Chemistry B, 2004, 108, 17928-17939.	1.2	39
52	Oxidative adsorption and hydrogen-mediated desorption of parabanic acid on Pt(111) electrodes. Journal of Electroanalytical Chemistry, 2003, 550-551, 53-65.	1.9	6
53	Determination of the potentials of zero total charge of Pt(100) stepped surfaces in the [] zone. Effect of the step density and anion adsorption. Journal of Electroanalytical Chemistry, 2003, 552, 115-128.	1.9	91
54	Electrochemical characterisation of platinum–palladium nanoparticles prepared in a water-in-oil microemulsion. Journal of Electroanalytical Chemistry, 2003, 554-555, 273-284.	1.9	121

#	Article	IF	CITATIONS
55	Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy. Electrochemistry Communications, 2003, 5, 56-60.	2.3	47
56	Two-Dimensional Effects on the in Situ Infrared Spectra of CO Adsorbed at Palladium-Covered Pt(111) Electrode Surfaces. Journal of Physical Chemistry B, 2003, 107, 2018-2028.	1.2	22
57	Electrochemical Oxidation of D-Sorbitol and D-Manitol on Platinum Monocrystalline Surfaces. Portugaliae Electrochimica Acta, 2003, 21, 327-343.	0.4	5
58	Role of Crystalline Defects in Electrocatalysis:Â CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 9863-9872.	1.2	221
59	Surface electrochemistry of CO on Pt(): anion effects. Surface Science, 2002, 499, L149-L158.	0.8	125
60	Electrochemical Properties of Pd/Pt(111) Adlayers. , 2002, , 37-52.		5
61	Adsorption of CO at Palladium Monolayers Deposited on Pt(111) Electrodes. Combined Spectroelectrochemical and Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 7263-7271.	1.2	39
62	Potential of zero total charge of palladium modified Pt(111) electrodes in perchloric acid solutions. Physical Chemistry Chemical Physics, 2001, 3, 3269-3276.	1.3	47
63	Urea Adsorption on Platinum Single Crystal Stepped Surfaces. Langmuir, 2001, 17, 8260-8269.	1.6	27
64	Hydrolysis of the 4-cyanopyridine on a Au(111) electrode studied by vibrational spectroscopies. Electrochimica Acta, 2001, 46, 4319-4329.	2.6	16
65	Anion adsorption on Pd–Pt(111) electrodes in sulphuric acid solution. Journal of Electroanalytical Chemistry, 2001, 497, 125-138.	1.9	78
66	Electro-oxidation of d-mannitol on platinum single crystal surfaces. Electrochimica Acta, 2001, 46, 3147-3155.	2.6	5
67	Urea Adsorption at Rhodium Single-Crystal Electrodes. Langmuir, 2000, 16, 10376-10384.	1.6	18
68	Sensitivity of Compressed Carbon Monoxide Adlayers on Platinum(111) Electrodes to Long-Range Substrate Structure:Â Influence of Monoatomic Steps. Langmuir, 2000, 16, 811-816.	1.6	112
69	Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes. Langmuir, 2000, 16, 4695-4705.	1.6	25
70	Urea adsorption on Pt(111) electrodes. Journal of Electroanalytical Chemistry, 1999, 461, 65-75.	1.9	46
71	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 1999, 467, 20-29.	1.9	11
72	Surface Reactivity at "Chiral―Platinum Surfaces. Langmuir, 1999, 15, 2420-2424.	1.6	246

#	Article	IF	CITATIONS
73	Temperature Effects in the Enantiomeric Electro-Oxidation of d- and l-Glucose on Pt{643}S. Journal of Physical Chemistry B, 1999, 103, 1381-1385.	1.2	127
74	Nitric oxide adsorption at Pt(100) electrode surfaces. Electrochimica Acta, 1998, 44, 1077-1090.	2.6	61
75	In situ FT–IRRAS study of SO2 adlayers formed on Pt(111) electrodes from open-circuit adsorption in acidic media. Electrochimica Acta, 1998, 44, 1091-1096.	2.6	23
76	On the oxidation of d-sorbitol on platinum single crystal electrodes: a voltammetric and in situ FTIRS study. Electrochimica Acta, 1998, 44, 735-743.	2.6	6
77	Electrochemical behaviour of amino acids on Pt(hkl). A voltammetric and in situ FTIR study Journal of Electroanalytical Chemistry, 1998, 445, 155-164.	1.9	21
78	Reactivity of Pt(h,k,l) surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 133-143.	2.3	5
79	On the Electrochemical and in-Situ Fourier Transform Infrared Spectroscopy Characterization of Urea Adlayers at Pt(100) Electrodes. Langmuir, 1997, 13, 2380-2389.	1.6	42
80	Electrochemical behaviour of oxocarbons on single crystal platinum electrodes Part IV. Rhodizonic acid in 0.5 M sulphuric acid medium. Journal of Electroanalytical Chemistry, 1997, 424, 185-196.	1.9	17
81	Electrochemical behaviour of amino acids on Pt(h,k,l): a voltammetric and in situ FTIR study. Part 1. Glycine on Pt(111). Journal of Electroanalytical Chemistry, 1997, 421, 179-185.	1.9	52
82	Irreversibly adsorbed As at full blockage on Pt(111) electrodes: Surface stoichiometry. Journal of Electroanalytical Chemistry, 1997, 434, 121-127.	1.9	27
83	Electrochemical behaviour of amino acids on Pt(h, k, l). A voltammetric and in situ FTIR study. Part II. Serine and alanine on Pt(111). Journal of Electroanalytical Chemistry, 1997, 431, 269-275.	1.9	32
84	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes: Part 2. Semicarbazide on Pt(100) electrodes. Journal of Electroanalytical Chemistry, 1997, 436, 245-255.	1.9	13
85	Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3769.	1.7	50
86	On the voltammetric and spectroscopic characterization of nitric oxide adlayers formed from nitrous acid on Pt(h,k,l) and Rh(h,k,l) electrodes. Electrochimica Acta, 1996, 41, 729-745.	2.6	87
87	Spectroscopic investigations on the adsorption of trifluoracetate at Pt(100), Pt(110) and Pt(111). Journal of Electroanalytical Chemistry, 1996, 404, 61-68.	1.9	20
88	Electrochemical behaviour of oxocarbons on single crystal platinum electrodes Part 3. Croconic acid oxidation on Pt(111) surfaces in acid medium. Journal of Electroanalytical Chemistry, 1996, 404, 161-169.	1.9	13
89	Co adsorption and oxidation on pt(111) electrodes modified by irreversibly adsorbed selenium and tellurium. Journal of Electroanalytical Chemistry, 1996, 412, 165-174.	1.9	31
90	Vibrational spectroscopy at the electrochemical interface. Electrochimica Acta, 1995, 40, 53-59.	2.6	60

#	Article	IF	CITATIONS
91	Vibrational spectroscopy of carbonate adsorbed on Pt(111) and Pt(110) single-crystal electrodes. Journal of Electroanalytical Chemistry, 1995, 383, 181-189.	1.9	80
92	Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hkl) in alkaline media. Journal of Electroanalytical Chemistry, 1995, 391, 149-157.	1.9	85
93	CO adsorption and oxidation on Pt(111) electrodes modified by irreversibly adsorbed arsenic in sulphuric acid medium. Comparison with bismuth-modified electrodes. Journal of Electroanalytical Chemistry, 1995, 393, 87-96.	1.9	45
94	Electrochemical behaviour of aqueous SO2 at Pt electrodes in acidic medium. A voltammetric and in situ Fourier transform IR study Part I. Oxidation of SO2 on Pt electrodes with sulphur-oxygen adsorbed species. Journal of Electroanalytical Chemistry, 1995, 394, 217-227.	1.9	75
95	FTIRS and electrochemical characterization of the NO adlayer generated by immersion of a Rh(111) electrode in an acidic solution of nitrite. Journal of Electroanalytical Chemistry, 1995, 393, 123-129.	1.9	27
96	Electrochemical behaviour of aqueous sulphur dioxide at polycrystalline Pt electrodes in acidic medium. A voltammetric and in-situ FT-IR study Part II. Promoted oxidation of sulphur dioxide. Reduction of sulphur dioxide. Journal of Electroanalytical Chemistry, 1995, 398, 105-115.	1.9	56
97	In Situ FTIR Spectroscopy Characterization of the NO Adlayers Formed at Platinum Single Crystal Electrodes in Contact with Acidic Solutions of Nitrite. Langmuir, 1995, 11, 3549-3553.	1.6	61
98	Electrochemical and in situ FTIR studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces. I. Pt(110) substrate. Surface Science, 1995, 327, 202-215.	0.8	54
99	Electrochemical and in situ FTIRS studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces II. Pt(100) substrate. Surface Science, 1995, 344, 85-97.	0.8	49
100	FTIRS and electrochemical characterization of NO adlayers on Pt(hkl) generated upon immersion in an acidic solution of nitrite. Surface Science, 1995, 342, L1104-L1110.	0.8	48
101	Structural efects on CO2 reduction at Pt single-crystal electrodes. Journal of Electroanalytical Chemistry, 1994, 373, 167-175.	1.9	46
102	Structural effects on CO2 reduction at Pt single-crystal electrodes. Journal of Electroanalytical Chemistry, 1994, 377, 215-225.	1.9	49
103	Electrochemical behaviour of oxocarbons on single crystal platinum electrodes Part II. Croconic acid oxidation on Pt(S)-[n(100) × (111)] surfaces in 0.5 M sulphuric acid medium. Journal of Electroanalytical Chemistry, 1994, 376, 101-108.	1.9	12
104	FTIR study of surface structure influence on the electrochemical behaviour of the ascorbate anion at platinum electrodes in neutral solutions. Journal of Electroanalytical Chemistry, 1994, 374, 263-268.	1.9	3
105	An FTIR study on the adsorption of acetate at the basal planes of platinum single-crystal electrodes. Journal of Electroanalytical Chemistry, 1994, 376, 109-118.	1.9	124
106	Structural effects on CO2 reduction at Pt single-crystal electrodes. Journal of Electroanalytical Chemistry, 1994, 369, 183-191.	1.9	62
107	Voltammetric and subtractively normalized interfacial FTIR study of the adsorption and oxidation ofL(+)-ascorbic acid on Pt electrodes in acid medium: effect of Bi adatoms. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 609-615.	1.7	9
108	Electrochemical study of step reconstruction on platinum surfaces belonging to the [01] zone between Pt(311) and Pt(111). Journal of Electroanalytical Chemistry, 1993, 344, 269-288.	1.9	25

#	Article	IF	CITATIONS
109	Electrochemical detection and characterization at Pt(n,n,n - 2) oriented electrodes of multiatomic step formation induced by quenching at high temperatures. Journal of Electroanalytical Chemistry, 1993, 348, 247-264.	1.9	20
110	FTIR study of the electrochemical behaviour of squaric acid on polycrystalline platinum electrodes in 0.5 M H2SO4. Journal of Electroanalytical Chemistry, 1993, 352, 345-352.	1.9	16
111	An electrochemical study in perchloric acid medium of adlayers formed from irreversible adsorption of nitrite on Pt(100). Journal of Electroanalytical Chemistry, 1993, 359, 315-323.	1.9	38
112	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes Journal of Electroanalytical Chemistry, 1993, 358, 287-305.	1.9	29
113	Electrochemical behaviour of Pt(100) in various acidic media. Journal of Electroanalytical Chemistry, 1992, 338, 317-338.	1.9	35
114	Electrochemical behaviour of Pt(100) in various acidic media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 305, 115-129.	0.3	116
115	The role of the crystalline surface structure of platinum electrodes in the electrooxidation of d-glucose in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 175-197.	0.3	20
116	Electrochemistry at platinum single crystal surfaces in acidic media : hydrogen and oxygen adsorption. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1991, 88, 1291-1337.	0.2	223
117	In situ probing of step and terrace sites on Pt(S)-[n(111) × (111)] electrodes. Chemical Physics, 1990, 141, 1-14.	0.9	207
118	Electrochemical monitoring of the thermal reordering of platinum single-crystal surfaces after metallographic polishing from the early stage to the equilibrium surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 295, 333-356.	0.3	181
119	Electrochemical behaviour of oxalic acid on platinum electrodes in acidic medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 281, 199-219.	0.3	35
120	Hydrogen probing of step and terrace sites on Pt(S)-[n(111) × (100)]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 284, 245-253.	0.3	203
121	In situ characterization of the Pt(S)-[n(111) /sx (111)] electrode surfaces using electrosorbed hydrogen for probing terrace an step sites. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 272, 253-261.	0.3	124
122	The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III) / Cr(II). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 271, 127-139.	0.3	15
123	Irreversible tin adsorption on polyoriented gold electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 256, 455-462.	0.3	24