Luka ÄorÄ'ević

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389538/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic Aqueous CO ₂ Reduction to CO and CH ₄ Sensitized by Ullazine Supramolecular Polymers. Journal of the American Chemical Society, 2022, 144, 3127-3136.	6.6	43
2	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
3	Efficient and Stable Perovskite Solar Cells based on Nitrogenâ€Đoped Carbon Nanodots. Energy Technology, 2022, 10, .	1.8	4
4	Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS Nano, 2022, 16, 8993-9003.	7.3	8
5	Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source. Nature Chemistry, 2022, 14, 1007-1012.	6.6	36
6	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie - International Edition, 2021, 60, 313-320.	7.2	26
7	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie, 2021, 133, 317-324.	1.6	2
8	Lighting up the Electrochemiluminescence of Carbon Dots through Pre―and Postâ€Synthetic Design. Advanced Science, 2021, 8, 2100125.	5.6	49
9	A Donor–Acceptor [2]Catenane for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8000-8010.	6.6	47
10	Snapshots into carbon dots formation through a combined spectroscopic approach. Nature Communications, 2021, 12, 2640.	5.8	86
11	Selective Photodimerization in a Cyclodextrin Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 9129-9139.	6.6	34
12	Quantum Dot-Sensitized Photoreduction of CO ₂ in Water with Turnover Number > 80,000. Journal of the American Chemical Society, 2021, 143, 18131-18138.	6.6	75
13	Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature Communications, 2021, 12, 7208.	5.8	31
14	Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 1768-1773.	6.6	163
15	Oâ€Doped Nanographenes: A Pyrano/Pyrylium Route Towards Semiconducting Cationic Mixedâ€Valence Complexes. Angewandte Chemie, 2020, 132, 4135-4143.	1.6	20
16	Oâ€Doped Nanographenes: A Pyrano/Pyrylium Route Towards Semiconducting Cationic Mixedâ€Valence Complexes. Angewandte Chemie - International Edition, 2020, 59, 4106-4114.	7.2	33
17	Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on <i>h</i> BN/Cu(111). Beilstein Journal of Nanotechnology, 2020, 11, 1470-1483.	1.5	2
18	Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Materials Chemistry Frontiers, 2020, 4, 3640-3648.	3.2	15

Luka Äorä'ενiä‡

#	Article	IF	CITATIONS
19	O-Annulation to Polycyclic Aromatic Hydrocarbons: A Tale of Optoelectronic Properties from Five- to Seven-Membered Rings. Organic Letters, 2020, 22, 4283-4288.	2.4	27
20	Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures. Nano Letters, 2020, 20, 4234-4241.	4.5	12
21	Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nature Communications, 2020, 11, 2103.	5.8	34
22	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie - International Edition, 2020, 59, 12779-12784.	7.2	28
23	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie, 2020, 132, 12879-12884.	1.6	4
24	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
25	Preparation, functionalization and characterization of engineered carbon nanodots. Nature Protocols, 2019, 14, 2931-2953.	5.5	96
26	Perylene Bisimide Aggregates as Probes for Subnanomolar Discrimination of Aromatic Biogenic Amines. ACS Applied Materials & Interfaces, 2019, 11, 17079-17089.	4.0	38
27	Templating Porphyrin Anisotropy via Magnetically Aligned Carbon Nanotubes. ChemPlusChem, 2019, 84, 1270-1278.	1.3	9
28	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie, 2018, 130, 5156-5161.	1.6	23
29	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5062-5067.	7.2	66
30	Functionally Biased D2R Antagonists: Targeting the β-Arrestin Pathway to Improve Antipsychotic Treatment. ACS Chemical Biology, 2018, 13, 1038-1047.	1.6	24
31	Screening Supramolecular Interactions between Carbon Nanodots and Porphyrins. Journal of the American Chemical Society, 2018, 140, 904-907.	6.6	59
32	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	7.3	77
33	Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nature Communications, 2018, 9, 3442.	5.8	169
34	Inter-Backbone Charge Transfer as Prerequisite for Long-Range Conductivity in Perylene Bisimide Hydrogels. ACS Nano, 2018, 12, 5800-5806.	7.3	8
35	Rationally Designed Carbon Nanodots towards Pure Whiteâ€Light Emission. Angewandte Chemie, 2017, 129, 4234-4237.	1.6	22
36	Rationally Designed Carbon Nanodots towards Pure White‣ight Emission. Angewandte Chemie - International Edition, 2017, 56, 4170-4173.	7.2	99

Luka Äorä'ενiä‡

#	Article	IF	CITATIONS
37	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie - International Edition, 2017, 56, 12097-12101.	7.2	58
38	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie, 2017, 129, 12265-12269.	1.6	16
39	Synthesis and characterization of a hydrophilic conjugated 4+4 Re(I)-porphyrin metallacycle. Inorganica Chimica Acta, 2016, 453, 376-384.	1.2	3
40	Supramolecular Spangling, Crocheting, and Knitting of Functionalized Pyrene Molecules on a Silver Surface. ACS Nano, 2016, 10, 7665-7674.	7.3	32
41	Dysprosium-carboxylate nanomeshes with tunable cavity size and assembly motif through ionic interactions. Chemical Communications, 2016, 52, 11227-11230.	2.2	26
42	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Đoped Carbon NanoDots. Angewandte Chemie, 2016, 128, 2147-2152.	1.6	72
43	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Doped Carbon NanoDots. Angewandte Chemie - International Edition, 2016, 55, 2107-2112.	7.2	266
44	Solvent-dependent moulding of porphyrin-based nanostructures: solid state, solution and on surface self-assembly. Supramolecular Chemistry, 2016, 28, 753-761.	1.5	11
45	[60]Fullerene–porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Physical Chemistry Chemical Physics, 2016, 18, 11858-11868.	1.3	18
46	Effects of Two Fullerene Derivatives on Monocytes and Macrophages. BioMed Research International, 2015, 2015, 1-13.	0.9	16
47	Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers. Journal of the American Chemical Society, 2015, 137, 8150-8160.	6.6	48
48	On-Surface Synthesis of Rigid Benzenoid- and Nonbenzenoid-Coupled Porphyrin–Graphene Nanoribbon Hybrids. Journal of Physical Chemistry C, 0, , .	1.5	2